Synthesis and in vivo study of metallofullerene based MRI contrast agent

  • Jun Zhang
  • Kaimin Liu
  • Gengmei Xing
  • Tongxiang Ren
  • Shukuan Wang


Gd@C82(OH)40 has been developed as a new generation of MRI contrast agent. But recently, it was found that Gd@C82(OH) x with a larger number of OH (x>36) would lead to cage break and hence, release of highly toxic Gd ions. We synthesized the more stable Gd@C82(OH) x with less OH-number, Gd@C82(OH)16, and studied its proton relaxivity and MRI images. The results indicate that Gd@C82(OH)16 also gives high proton relaxivity, even higher than that of (NMG)2-Gd-DTPA. The bio-distribution indicated that Gd@C82(OH)16 tends to be entrapped in the liver and kidney and remained in tissue for about 2 hours. The results suggest that the more stable metallofullerene derivative Gd@C82(OH)16 can be the potential candidate of the new MRI contrast agent.


Fullerene Magnetic Resonance Imaging Study Magnetic Resonance Imaging Image Magnetic Resonance Imaging Contrast Agent Proton Relaxivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Y. Huang, X. Y. Liang, Principle of Magnetic Resonance Imaging, Shanxi Science and Technology Press, 1998, p. 150.Google Scholar
  2. 2.
    F. N. Franano, W. B. Edwards, M. J. Welch, M. W. Brechbiel, O. A. Gansow, J. R. Duncan, Magn. Reson. Imaging., 13 (1995) 201.PubMedCrossRefGoogle Scholar
  3. 3.
    P. Wedeking, K. Kumar, M. F. Tweedle, Magn. Reson. Imaging, 10 (1992) 641.PubMedCrossRefGoogle Scholar
  4. 4.
    W. P. Cacheris, S. C. Quay, S. M. Rocklage, Magn. Reson. Imaging, 8 (1990) 467.PubMedCrossRefGoogle Scholar
  5. 5.
    E. Brücher, in: Contrast Agents I. Magnetic Resonance Imaging, W. Krause (Ed.), Topics in Current Chemistry, Vol. 221, Springer-Verlag, Berlin, 2002, p. 103.Google Scholar
  6. 6.
    H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature, 318 (1985) 162.CrossRefADSGoogle Scholar
  7. 7.
    R. Taylor, D. R. M. Walton, Nature, 363 (1993) 685.CrossRefADSGoogle Scholar
  8. 8.
    Shuying Liu, Shuqing Sun, J. Organomet. Chem., 599 (2000) 74.CrossRefGoogle Scholar
  9. 9.
    Jun Tang, Gengmei Xing, Yuliang Zhao, Long Jing, Xingfa Gao, Yue Cheng, Hui Yuan, Feng Zhao, Zhen Chen, Huan Meng, Hui Zhang, Haijie Qian, Run Su, Kurash Ibrahim, Adv. Mater., in press.Google Scholar
  10. 10.
    Jun Tang, Gengmei Xing, Feng Zhao, Yuliang Zhao, J. Nanosci. Nanotechnol., in press.Google Scholar
  11. 11.
    D. W. Cagle, S. J. Kennel, S. Mirzadeh, J. M. Alford, L. J. Wilson, Proc. Natl. Acad. Sci. USA, 96 (1999) 5182.PubMedCrossRefADSGoogle Scholar
  12. 12.
    É. Toth, R. D. Bolskar, A. Borel, G. González, L. Helm, A. E. Merbach, B. Sitharaman, L. J. Wilson, J. Am. Chem. Soc., 127 (2005) 799.PubMedCrossRefGoogle Scholar
  13. 13.
    B. Sitharaman, R. D. Bolskar, I. Rusakova, L. J. Wilson, Nano Lett., 12 (2004) 2373.CrossRefGoogle Scholar
  14. 14.
    Xing Lu, Jianxun Xu, Zujin Shi, Baoyun Sun, Zhennan Gu, Hongdong Liu, Hongbin Han, Chem. J. Chinese U, 25 (2004) 697.ADSGoogle Scholar
  15. 15.
    M. Mikawa, H. Kato, M. Okumura, M. Narazaki, Y. Kanazawa, N. Miwa, H. Shinohara, Bioconjugate Chem., 12 (2001) 510.CrossRefGoogle Scholar
  16. 16.
    R. D. Bolskar, A. F. Benedetto, L. O. Husebo, R. E. Price, E. F. Jackson, S. Wallace, L. J. Wilson, J. M. Alford, J. Am. Chem. Soc., 125 (2003) 5471.PubMedCrossRefGoogle Scholar
  17. 17.
    Li Qu, Winbin Cao, Yuliang Zhao, Gengmei Xing, Jun Zhang, Hui Yuan, Jun Tang, Zhifang Chai, Hao Lei, J. Alloy Comp., 408/412 (2006) 400.CrossRefGoogle Scholar
  18. 18.
    Chunying Chen, Gengmei Xing, Jiangxue Wang, Yuliang Zhao, Bai Li, Guang Jia, Tiancheng Wang, Jin Sun, Li Xing, Hui Yuan, Yuxi Gao, Chang Ye, Jun Tang, Li Qu, Huan Meng, Zheng Chen, Zhifang Chai, Nano Lett., 4 (2005) 1050.Google Scholar
  19. 19.
    Jiangxue Wang, Chunying Chen, Bai Li, Hongwei Yu, Yuliang Zhao, Jin Sun, Yufeng Li, Gengmei Xing, Hui Yuan, Jun Tang, Zhen Chen, Huan Meng, Yuxi Gao, Chang Ye, Zhifang Chai, Chuanfeng Zhu, Baocheng Ma, Xiaohong Fang, Lijun Wan, Biochem. Pharmacol., 71 (2006) 872.PubMedCrossRefGoogle Scholar
  20. 20.
    G. M. Xing, J. Zhang, Y. L. Zhao, J. Tang, B. Zhang, X. F. Gao, H. Yuan, L. Qu, W. B. Cao, Z. F. Chai, K. Ibrahim, R. Su, J. Phys. Chem., B108 (2004) 11473.Google Scholar
  21. 21.
    Yuliang Zhao, Zhenlin Chen, Xinfa Gao, Li Qu, Zhifang Chai, Hui Yuan, Gengmei Xing, Soichiro Yoshimoto, Eishi Tsutsumi, Kingo Itaya, J. Am. Chem. Soc., 126 (2004) 11135.Google Scholar
  22. 22.
    K. Akiyama, Y. L. Zhao, K. Sueki, K. Tuskada, H. Haba, Y. Nagame, S. Suzuki, T. Otuski, M. Sakaguchi, K. Kikuchi, M. Katada, H. Nakahara, J. Am. Chem. Soc., 123 (2001) 181.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhen Chen, Huan Meng, Gengmei Xing, Hui Yuan, Guang Jia, Chunying Chen, Xiaohong Fang, Chang Ye, Zhuanfeng Zhu, Yuliang Zhao, Toxicol Lett., 163 (2006) 109.PubMedCrossRefGoogle Scholar
  24. 24.
    Bing Wang, Weiyue Feng, Tian Cheng Wang, Guang Jia, Jun-Wen Shi, Fang Zhang, Yuliang Zhao, Zhifang Chai, Toxicol Lett., 161 (2006) 115.PubMedCrossRefGoogle Scholar
  25. 25.
    Haifang Wang, Jing Wang, Xiaoyong Deng, Hongfang Sun, Zujin Shi, Zhennan Gu, Yuanfang Liu, Yuliang Zhao, J. Nanosci. Nanotechnol., 4 (2004) 1019.PubMedCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2007

Authors and Affiliations

  • Jun Zhang
    • 1
    • 2
  • Kaimin Liu
    • 1
  • Gengmei Xing
    • 2
  • Tongxiang Ren
    • 2
  • Shukuan Wang
    • 1
  1. 1.School of Life Science and TechnologyBeijing Institute of TechnologyBeijingP.R. China
  2. 2.Laboratory for Bio-Environmental Health Sciences of Nanoscale Materials, Institute of High Energy PhysicsChinese Academy of SciencesBeijingP.R. China

Personalised recommendations