Multi-element analysis of bone from the osteogenesis imperfecta model (OIM) mouse using thermal and fast neutron activation analysis

  • C. E. Huntington
  • S. M. Carleton
  • D. J. McBride
  • C. L. Phillips
  • J. S. Morris


Osteogenesis imperfecta (OI) is a heritable osteoporotic bone disease, due to defects in either type I procollagen genes (COL1A1 or COL1A2), resulting in abnormal and/or reduced levels of type I procollagen and alterations in bone mineralization. Our long term objectives are to evaluate the impact of proα1(I) and proα2(I) collagen mutations and the role of the genetic background on bone mineralization. Tibias from wildtype, heterozygous (oim/+), and homozygous (oim/oim) animals were subjected to instrumental neutron activation analysis (INAA) to measure F, P, Na, Mg, Cl, Ca, K, and Zn using the University of Missouri Research Reactor (MURR) pneumatic-tube irradiation facility.


Instrumental Neutron Activation Analysis HDPE Osteogenesis Imperfecta Wildtype Mouse Osteogenesis Imperfecta Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Osteogenesis Imperfecta Foundation, access date February 27, 2006,
  2. 2.
    D. O. Sillence, A. Senn, D. M. Danks, J. Med. Genet., 16 (1979) 101.CrossRefGoogle Scholar
  3. 3.
    J. Korkko, L. Ala-Kokko, A. De Paepe, L. Nuytinck, J. Earley, D. J. Prockop, Am. J. Hum. Genet., 62 (1998) 98.CrossRefGoogle Scholar
  4. 4.
    S. D. Chipman, H. O. Sweet, D. J. McBride, M. T. Davisson, S. C. Marks, A. R. Shuldiner, R. J. Wenstrup, D. W. Rowe, J. R. Shapiro, Proc. Natl. Acad. Sci. USA, 90 (1993) 1701.CrossRefGoogle Scholar
  5. 5.
    C. R. Scriver (Ed.), The Metabolic and Molecular Basis of Inherited Disease, 6th ed., McGraw-Hill, New York, 1989, p. 5241.Google Scholar
  6. 6.
    D. J. McBride, J. R. Shapiro, Genomics, 20 (1994) 135.CrossRefGoogle Scholar
  7. 7.
    J. Saban, M. A. Zussman, R. Havey, A. G. Patwardhan, G. B. Schneider, D. King, Bone, 19 (1996) 575.CrossRefGoogle Scholar
  8. 8.
    M. D. Glascock, W. Z. Tian, W. D. Ehmann, J. Radioanal. Nucl. Chem., 92 (1985) 379.CrossRefGoogle Scholar
  9. 9.
    T. P. Cheng, J. S. Morris, S. R. Koirtyohann, V. L. Sate, C. K. Baskett, Nucl. Instr. Meth. Phys. Rev., B353 (1994) 457.CrossRefGoogle Scholar
  10. 10.
    C. L. Phillips, D. A. Bradley, C. L. Schlotzhauer, M. Bergfeld, C. Libreros-Minotta, L. R. Gawenis, J. S. Morris, L. L. Clarke, L. S. Hillman, Bone, 27 (2000) 219.CrossRefGoogle Scholar
  11. 11.
    P.-T. Cheng, S. M. Bader, M. D. Grynpas, Cells Materials, 5 (1995) 271.Google Scholar
  12. 12.
    A. Bigi, G. Falini, E. Foresti, M. Gazzano, A. Ripamonti, N. Roveri, J. Inorg. Biochem., 49 (1993) 69.CrossRefGoogle Scholar
  13. 13.
    A. L. Boskey, C. M. Rimnac, M. Bansal, M. Federman, J. Lian, B. D. Boyan, J. Orthop. Res., 10 (1992) 774.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • C. E. Huntington
    • 1
  • S. M. Carleton
    • 2
  • D. J. McBride
    • 4
  • C. L. Phillips
    • 3
  • J. S. Morris
    • 1
  1. 1.University of Missouri Research Reactor CenterColumbiaUSA
  2. 2.Genetics Area ProgramUniversity of Missouri-ColumbiaColumbiaUSA
  3. 3.Department of BiochemistryUniversity of Missouri-ColumbiaColumbiaUSA
  4. 4.Division of Endocrinology, Diabetes and NutritionUniversity of MarylandBaltimoreUSA

Personalised recommendations