Skip to main content
Log in

Comparison of the role of photon and neutron activation analyses for elemental characterization of geological, biological and environmental materials

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The potential of photon activation analysis (PAA) for multielement trace analysis can hardly compare with that of neutron activation analysis (NAA). However, PAA appears superior over NAA for the determination of a number of elements, namely C, N, O, F, Mg, Si, Ca, Ti, Ni, Sr, Y, Zr, Nb, Sn, Tl and Pb in geological, environmental and biological materials. Most of these and other elements can be determined using nondestructive, instrumental PAA (IPAA), especially in geological materials. The possibilities of IPAA for multielement analysis using photoexitation and other photonuclear reactions are reviewed and compared with those of instrumental NAA (INAA), namely for geological materials. The need for and usefulness of radiochemical PAA (RPAA) procedures are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Byrne, Fresenius J. Anal. Chem., 345 (1993) 144.

    Article  CAS  Google Scholar 

  2. A. R. Byrne, J. Kučera, Proc. IAEA Intern. Symp. on Harmanization of Health Related Environmental Measurements Using Nuclear and Isotopic Techniques, Hyderabad, 4–7 November 1996, IAEA Vienna, 1997, p. 223.

  3. G. J. Lutz, Anal. Chem. 43 (1971) 93.

    Article  CAS  Google Scholar 

  4. Z. Randa, B. Spaček, J. Kuncíř, J. Benada, Nondestructive Gamma Activation Analysis of Mineral Materials, CAEC, Nuclear Information Centre, Prague, 1981.

    Google Scholar 

  5. C. Segebade, H. P. Weise, G. J. Lutz, Photon Activation Analysis, W. de Gruiter, Berlin, New York, 1988.

    Google Scholar 

  6. K. Sakamoto, N. Aota, Y. Miyamoto, S. Kosanda, Y. Oura, T. Okui, M. Igarashi, T. Nakanishi, J. Radioanal. Nucl. Chem., 215 (1997) 69.

    Article  CAS  Google Scholar 

  7. K. Masumoto, T. Ohtsuki, Y. Miyamoto, J. H. Zaidi, A. Kajikawa, H. Haba, K. Sakamoto, J. Radioanal. Nucl. Chem., 239 (1999) 495.

    Article  CAS  Google Scholar 

  8. M. Ebihara, Y. Oura, T. Ishii, M. Setoguchi, H. Nakahara, T. Ohtsuki, J. Radioanal. Nucl. Chem., 244 (2000) 491.

    Article  CAS  Google Scholar 

  9. Z. Řanda, J. Kučera, L. Soukal, J. Radioanal. Nucl. Chem., 257 (2003) 275.

    Article  Google Scholar 

  10. S. Landsberger, W. F. Davidson, Anal. Chem., 57 (1985) 196.

    Article  CAS  Google Scholar 

  11. J. Z. Ni, X. G. Xu, R. C. Block, R. F. Bopp, Intern. J. Environ. Anal. Chem., 78 (2000) 117.

    CAS  Google Scholar 

  12. J. Z. Ni, X. G. Xu, R. C. Block, J. Radioanal. Nucl. Chem., 245 (2000) 501.

    Article  CAS  Google Scholar 

  13. A. Chattopadhyay, J. Radioanal. Chem., 37 (1977) 785.

    Article  CAS  Google Scholar 

  14. G. J. Lutz, N. K. Aras, W. H. Zoller, G. E. Gordon, J. Radioanal. Chem., 16 (1973) 609.

    Article  CAS  Google Scholar 

  15. N. K. Aras, W. H. Zoller, G. E. Gordon, G. J. Lutz, Anal. Chem., 45 (1973) 1481.

    Article  CAS  Google Scholar 

  16. R. Dams, Pure Appl. Chem., 64 (1992) 991.

    CAS  Google Scholar 

  17. Z. Řanda, J. Kučera, L. Soukal, J. Radioanal. Nucl. Chem., 248 (2001) 149.

    Article  Google Scholar 

  18. J. Kučera, Z. Řanda, L. Soukal, J. Radioanal. Nucl. Chem., 249 (2001) 61.

    Article  Google Scholar 

  19. Z. Řanda, F. Kreisinger, J. Radioanal. Chem., 77 (1983) 279.

    Article  Google Scholar 

  20. Z. Řanda, B. Špaček, J. Mizera, J. Radioanal. Nucl. Chem., 271 (2007) 603.

    Google Scholar 

  21. K. Govindaraju, Geostandards Newsl., Spec. Issue, 18 (1994) 15.

    Google Scholar 

  22. US NIST, Certificate of Analysis, SRM-2704 Buffalo River Sediment, Gaithersburg, MD, 1998.

    Google Scholar 

  23. US NIST, Certificate of Analysis, SRM-1632a Trace Elements in Coal (Bituminous), NBS, Washington, August, 1979.

    Google Scholar 

  24. US NIST, Certificate of Analysis, SRM-1633b Coal Fly Ash, Gaithersburg, MD, 1993.

    Google Scholar 

  25. B. Griepink, H. Muntau, BCR Information — Reference Materials (CRM 277, CRM 280, CRM 320), Report EUR 11850 EN, 1982.

  26. Z. Řanda, J. Kučera, J. Radioanal. Nucl. Chem., 259 (2004) 99.

    Article  Google Scholar 

  27. V. Havránek, J. Kučera, Z. Řanda, V. Voseček, J. Radioanal. Nucl. Chem., 259 (2004) 325.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Řanda, Z., Kučera, J., Mizera, J. et al. Comparison of the role of photon and neutron activation analyses for elemental characterization of geological, biological and environmental materials. J Radioanal Nucl Chem 271, 589–596 (2007). https://doi.org/10.1007/s10967-007-0311-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-007-0311-1

Keywords

Navigation