Journal of Radioanalytical and Nuclear Chemistry

, Volume 271, Issue 1, pp 173–178 | Cite as

Effects of inhomogeneity and contamination in k0-INAA of low (K, Th, U)-content sand for the annual radiation dose determination in luminescence dating

  • F. De Corte
  • S. M. Hossain
  • D. Vandenberghe
  • P. Van den Haute


It was demonstrated that for the determination of the annual radiation dose for use in luminescence dating of sediments, one should be aware of possible material inhomogeneities when applying analysis methods (such as k 0-INAA) with sample intakes of the order of the gram (to be compared with Ge gamma-ray spectrometry in cylindrical or Marinelli geometry, the latter involving ∼1.5 kg material). Moreover, when trying to remove the inhomogeneity, care should be taken to avoid contamination of the elements investigated, especially in the case of low (K, Th, U)-content sand with a considerable abrasive action (such as the Ossendrecht coversand dealt with in the present work). Whereas contamination was indeed shown to happen when grinding the material in a porcelain mortar, a satisfactory technique proved to be agate-ball milling.


Radon 210Pb INAA Optically Stimulate Luminescence Sample Intake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Vandenberghe, C. Kasse, S. M. Hossain, F. De Corte, P. Van Den Haute, M. Fuchs, A. S. Murray, J. Quatern. Sci., 19 (2004) 73.CrossRefGoogle Scholar
  2. 2.
    S. M. Hossain, F. De Corte, D. Vandenberghe, P. Van Den Haute, Nucl. Instr. Meth., A490 (2002) 598.Google Scholar
  3. 3.
    M. J. Aitken, Thermoluminescence Dating, Academic Press, London, 1985.Google Scholar
  4. 4.
    IAEA, Preparation and Certification of IAEA Gamma Spectrometry Reference Materials RGU-1, RGTh-1 and RGK-1, Report IAEA/RL/148, Vienna, Austria, 1987.Google Scholar
  5. 5.
    B. Fazekas, G. Molnár, T. Belgya, L. Dabolczi, A. Simonits, J. Radioanal. Nucl. Chem., 215 (1997) 271.CrossRefGoogle Scholar
  6. 6.
    L. Moens, J. De Donder, Lin Xilei, F. De Corte, A. De Wispelaere, A. Simonits, J. Hoste, Nucl. Instr. Meth., 187 (1981) 451.CrossRefGoogle Scholar
  7. 7.
    S. Jovanović, A. Dlabać, N. Mihaljević, P. Vukotić, J. Radioanal. Nucl. Chem., 218 (1997) 13.CrossRefGoogle Scholar
  8. 8.
    F. De Corte, D. Vandenberghe, S. M. Hossain, A. De Wispelaere, P. Van Den Haute, J. Radioanal. Nucl. Chem., 262 (2004) 261.CrossRefGoogle Scholar
  9. 9.
    G. Adamiec, M. Aitken, Ancient TL, 16 (1998) 37.Google Scholar
  10. 10.
    C. Ingelbrecht, F. Peetermans, F. De Corte, A. De Wispelaere, C. Vandecasteele, E. Courtijn, P. D’hondt, Nucl. Instr. Meth., A303 (1991) 119.Google Scholar
  11. 11.
    F. De Corte, M. Dejaeger, S. M. Hossain, D. Vandenberghe, A. De Wispelaere, P. Van Den Haute, J. Radioanal. Nucl. Chem., 263 (2005) 659.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2007

Authors and Affiliations

  • F. De Corte
    • 1
  • S. M. Hossain
    • 1
  • D. Vandenberghe
    • 1
  • P. Van den Haute
    • 2
  1. 1.Laboratory of Analytical Chemistry, Institute for Nuclear SciencesGhent UniversityGentBelgium
  2. 2.Laboratory for Mineralogy, Petrography and Micropedology, Geological InstituteGhent UniversityGentBelgium

Personalised recommendations