Bioaccumulation and biosorption of stable strontium and 90Sr by Oscillatoria homogenea cyanobacterium

  • R. Dabbagh
  • H. Ghafourian
  • A. Baghvand
  • G. R. Nabi
  • H. Riahi
  • M. A. Ahmadi Faghih


The ability of living filamentous cells of the cyanobacterium Oscillatoria homogenea to separate stable strontium and 90Sr from aqueous solution is demonstrated in this study. On a basis of filamentous cell biovolume, the removal were 43.78 nM·ml·(mm3)−1 and 3129.48 mBq·ml·(mm3)−1 after 240 hour incubation. The optimum pH for strontium uptake is 9±0.3. The increasing biovolume of the blue-green alga elevates sorption. In the liquid culture containing 21.2 mm3·ml−1 filamentous cells and 1000 nM·ml−1 initial strontium concentration, the maximum strontium removal was 455.34 nM·ml·(mm3)−1. At 1200 Lux illumination, the maximum removal value was 58.62 nM·ml·(mm3)−1, and at the initial strontium concentration of 6590 nM·ml−1, 235.40 nM·ml·(mm3)−1 removal was observed. The experimental data fitted to Langmuir isotherm and the model parameters and correlation coefficient (R 2) were q max = 7.143 μg·(mm3)−1, b = 0.003 and 0.99, respectively.


Strontium Biosorption Bioaccumulation PIXE Biosorption Capacity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Farmer, Managing Environmental Pollution, Routledge, London, 1997, p. 191.Google Scholar
  2. 2.
    S. V. Avery, G. A. Codd, G. M. Gadd, J. Gen. Microbiol., 137 (1991) 405.Google Scholar
  3. 3.
    N. Tomika, K. Tanaka, H. Uchiyama, O. Yagi, E. Kokufuta, J. Ferment. Bioeng., 85 (1998) 604.CrossRefGoogle Scholar
  4. 4.
    N. Tomika, H. Uchiyama, O. Yagi, Appl. Environ. Microb., 60 (1994) 2227.Google Scholar
  5. 5.
    V. Gloaguen, H. Morvan, L. Hoffmann, J. Environ. Sci. Health, A31 (1996) 2437.CrossRefGoogle Scholar
  6. 6.
    G. W. Garnham, G. A. Codd, G. M. Gadd, Appl. Microbial. Biotechnol., 39 (1993) 666.CrossRefGoogle Scholar
  7. 7.
    G. W. Garnham, G. A. Codd, G. M. Gadd, J. Appl. Phycol., 5 (1993) 307.CrossRefGoogle Scholar
  8. 8.
    P. Plato, J. T. Denovan, Radiat. Bot., 14 (1974) 37.CrossRefGoogle Scholar
  9. 9.
    S. V. Avery, J. Chem. Tech. Biotechnol., 62 (1995) 3.CrossRefGoogle Scholar
  10. 10.
    B. Volesky, Sorption and biosorption, Bv sorbex Inc., Montreal, 2003, p. 35.Google Scholar
  11. 11.
    H. Ehrlich, C. Brierly, Microbial Mineral Recovery, Mc Graw-Hill, New York, 1990, p. 277.Google Scholar
  12. 12.
    B. Volesky, Z. R. Holan, Biotechnol. Progr., 11 (1995) 235.CrossRefGoogle Scholar
  13. 13.
    S. Singh, S. Negi, N. Bharati, H. N. Singh, FEMS Microbial. Lett., 117 (1994) 243.CrossRefGoogle Scholar
  14. 14.
    S. V. Avery, G. A. Codd, G. M. Gadd, FEMS Microbiol. Lett., 95 (1992) 235.CrossRefGoogle Scholar
  15. 15.
    J. R. Watts, R. S. Harvey, Uptake and Retention of 137Cs by a Blue-Green Alga in Continuous Flow and Batch, Savannah River Plants, Doc No. DPSPU 61-30-8A, 1962.Google Scholar
  16. 16.
    M. Sohrabi, Health Phys., 77 (1999) 3.CrossRefGoogle Scholar
  17. 17.
    K. B. D. Kaushik, Laboratory Methods for Blue-Green Algae, Associated Publishing Co., New Delhi, 1987, p. 17.Google Scholar
  18. 18.
    R. Rippka, Method. Enzymol., 167 (1988) 3.Google Scholar
  19. 19.
    R. W. Castenholz, Method. Enzymol., 167 (1988) 68.Google Scholar
  20. 20.
    R. W. Waterbury, The cyanobacteria-isolation, purification and identification, in: The Prokaryotes, 2nd ed., Springer, Berlin, 1992, p. 2058.Google Scholar
  21. 21.
    J. B. Waterbury, J. M. Willey, Method. Enzymol., 167 (1988) 100.Google Scholar
  22. 22.
    R. Y. Stanier, R. Kunisawa, M. Mamdel, G. Coen-bazire, Bacteriol. Rev., 35 (1971) 171.Google Scholar
  23. 23.
    T. V. Desikachary, CYANOPHYTA, Indian Council of Agriculture, New Delhi, 1959, p. 214; 217.Google Scholar
  24. 24.
    R. Rippka, Method. Enzymol., 167 (1988) 28.CrossRefGoogle Scholar
  25. 25.
    Bergey’s Manual of Systematic Bacteriology, Vol. 3, J. T. Staley, M. P. Bryant, N. Pfennig, J. G. Holt (Eds), McGraw-Hill, New York, 2002, p. 1710.Google Scholar
  26. 26.
    WHO, Toxic Cyanobacteria in Water: A Guide to their Public Health Consequences, Monitoring and Management, I. Chorus, J. Bartram (Eds), Publ. on behalf of WHO, London, 1999, p. 359.Google Scholar
  27. 27.
    CRC Handbook of Chemistry and Physics, D. R. Lide, H. P. R. Frederikse (Eds), CRC Press, Boca Raton, 1995–1996, p. 16.Google Scholar
  28. 28.
    R. Jalali-Rad, H. Ghafourian, Y. Asef, S. T. Dalir, M. H. Sahafipour, B. M. Gharanjik, J. Hazard. Mater., B-116 (2004) 125.CrossRefGoogle Scholar
  29. 29.
    A. M. Zakaria, Water Res., 35 (2001) 4405.CrossRefGoogle Scholar
  30. 30.
    T. D. Reynolds, P. A. Richards, Unit Operations and Processes in Environmental Engineering, PWS, Boston, 1996, p. 350.Google Scholar
  31. 31.
    S. R. Qasim, E. M. Motely, G. Zhu, Water Works Engineering, PHI Pub, New Delhi, 2000, p. 437.Google Scholar
  32. 32.
    Metcalf, Eddy, Wastewater Engineering Treatment and Reuse, Revised by: G. Tchobanoglous, L. Franklin, D. H. Stensel, 4th ed., Mc Graw-Hill, New York, 2003, p. 1144.Google Scholar
  33. 33.
    Y. Iwata, A. Satoh, Y. R. Sasaki, I. K. Kurmachi, J. Radioanal. Nucl. Chem., (2005) 295.Google Scholar
  34. 34.
    Y. Iwata, J. Radioanal. Nucl. Chem., (2001) 343.Google Scholar
  35. 35.
    Y. Iwata, M. Suzuki, Intern. J. PIXE, 10 (2000) 27.Google Scholar

Copyright information

© Akadémiai Kiadó 2007

Authors and Affiliations

  • R. Dabbagh
    • 1
    • 2
  • H. Ghafourian
    • 2
  • A. Baghvand
    • 1
  • G. R. Nabi
    • 1
  • H. Riahi
    • 3
  • M. A. Ahmadi Faghih
    • 1
  1. 1.Faculty of EnvironmentTehran UniversityTehranIran
  2. 2.Nuclear Research CenterAtomic Energy Organization of IranTehranIran
  3. 3.Biology DepartmentShahid Beheshti UniversityTehranIran

Personalised recommendations