Journal of Radioanalytical and Nuclear Chemistry

, Volume 262, Issue 3, pp 633–637 | Cite as

TSL and EPR studies of SrBPO5 doped with CeO2 and co-doped with CeO2 and Sm2O3

  • Mithlesh Kumar
  • R. M. Kadam
  • T. K. Seshagiri
  • V. Natarajan
  • A. G. Page
Article
  • 52 Downloads

Abstract

Thermally stimulated luminescence (TSL) and electron paramagnetic resonance (EPR) investigations were carried out on gamma irradiated SrBPO5 samples doped with CeO2 and co-doped with CeO2 and Sm2O3. On gamma-irradiation at room temperature, BO32−, O2 and O radicals were produced. It was seen that the O radical ion disappeared in the sample annealed at 500 K. It is proposed that the recombination between trapped electrons and O radical ions results in transfer of recombination energy to the impurity centre Ce3+ resulting in TSL glow peak at 485 K. In the case of co-doped samples energy transfer occurs between Ce3+ to Sm3+ resulting in increase in the intensity of glow peak at 485 K.

Keywords

Physical Chemistry Inorganic Chemistry Recombination Energy Transfer Electron Paramagnetic Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Sonoda, M. Takano, J. Miyahara, H. Kato, Radiology, 148 (1983) 833.Google Scholar
  2. 2.
    A. Karthikeyani, R. Jagannathan, J. Lumin., 86 (2000) 79.Google Scholar
  3. 3.
    K. Chakrabarti, V. K. Mathur, J. F. Rhodes, R. J. Abundi, J. Appl. Phys., 64 (1988) 1363.CrossRefGoogle Scholar
  4. 4.
    K. Chakrabarti, V. K. Mathur, L. A. Thomas, R. J. Abundi, Appl. Phys., 65 (1989) 2021.CrossRefGoogle Scholar
  5. 5.
    Y. Fukuda, H. Ohtaki, A. Tomitas, N. Takeuchii, Radiation Prot. Dosim., 47 (1993) 201.Google Scholar
  6. 6.
    Jianping Wu, D. Newman, I. V. F. Viney, J. Phys. D. Appl. Phys., 35 (2002) 968.Google Scholar
  7. 7.
    Sook Lee, P. J. Bray, J. Chem. Phys., 39 (1963) 2863.Google Scholar
  8. 8.
    D. L. Griscom, P. C. Taylor, D. A. Ware, P. J. Bray, J. Chem. Phys., 48 (1968) 5158.Google Scholar
  9. 9.
    P. C. Taylor, D. L. Griscom, P. J. Bray, J. Chem. Phys., 54 (1971) 748.Google Scholar
  10. 10.
    R. S. Eachus, M. C. R. Symons, J. Chem. Soc. A (1968) 2438.Google Scholar
  11. 11.
    A. J. Tench, T. Lawson, Chem. Phys. Lett., 7 (1970) 459.Google Scholar
  12. 12.
    D. Survanarayana, J. Sobhanadri, J. Magn. Reson., 16 (1974) 274.Google Scholar
  13. 13.
    F. K. Koschnick, J-M. Spaeth, R. S. Eachus, J. Phys. Condens. Matter, 4 (1992) 3015.Google Scholar
  14. 14.
    R. S. Eachus, W. G. Mcdugle, R. H. D. Nuttall, M. T. Olm, F. K. Koschnick, Th. Hangleiter, J-M. Spaeth, J. Phys. Condens. Matter, 3 (1991) 9339.Google Scholar
  15. 15.
    S. Schweizer, J-M. Spaeth, Bastow, J. Phys. Condens. Matter, 10 (1998) 9111.Google Scholar

Copyright information

© Akadémiai Kiadó 2004

Authors and Affiliations

  • Mithlesh Kumar
    • 1
  • R. M. Kadam
    • 1
  • T. K. Seshagiri
    • 1
  • V. Natarajan
    • 1
  • A. G. Page
    • 1
  1. 1.Radiochemistry Division, B.A.R.C.TrombayIndia

Personalised recommendations