Skip to main content
Log in

Fabrication of high-performance lignin/PHBH biocomposites with excellent thermal, barrier and UV-shielding properties

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Sustainable EHL/PHBH biocomposites were prepared by the addition of enzymatic hydrolyzed lignin (EHL) into poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) via solution casting technique. The research comprehensively evaluated the effects of EHL contents on the morphological, thermostability, barrier and anti-ultraviolet properties of EHL/PHBH biocomposites. SEM and FT-IR analysis showed that the EHL filler had good dispersibility in PHBH matrix and the good interface binding was observed in biocomposites. Compared with neat PHBH, the tensile strength and Young's modulus of biocomposites with 3 ~ 5 wt% EHL increased by 46.1% and 130.4%, respectively, and the maximum degradation temperature (Tmax) increased by 50 °C. More notably, a 30.2% and 52.3% reduction of the moisture and oxygen permeability, which were much higher than conventional plastics. It was also found that the biocomposites exhibited excellent UV resistance, almost completely shielding UV-A (320–400 nm) and UV-B (280–320 nm), and good antioxidant activity with 76.6% DPPH scavenging rate. The above, EHL/PHBH were demonstrated a promising biocomposites for anti-oxidation, UV-blocking, oxygen barrier and moisture-proof packaging materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The publication related datasets are available from the corresponding author on reasonable request.

References

  1. Narancic T, Cerrone F, Beagan N, O’connor KE (2020) Recent advances in bioplastics: application and biodegradation. Polymers 12:920. https://doi.org/10.3390/polym12040920

    Article  CAS  Google Scholar 

  2. Tsujimoto T, Hosoda N, Uyama H (2016) Fabrication of porous poly(3-hydroxybutyrate-co-3hydroxyhexanoate) monoliths via thermally induced phase separation. Polymers 8:66. https://doi.org/10.3390/polym8030066

    Article  CAS  Google Scholar 

  3. Yan X, Li DN, Ma XJ, Li JN (2021) Bioconversion of renewable lignocellulosic biomass into multicomponent substrate via pressurized hot water pretreatment for bioplastic polyhydroxyalkanoate accumulation. Bioresource Technol 339:125667. https://doi.org/10.1016/j.biortech.2021.125667

    Article  CAS  Google Scholar 

  4. Meereboer KW, Misra M, Mohanty AK (2020) Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem 22:5519–5558. https://doi.org/10.1039/d0gc01647k

    Article  CAS  Google Scholar 

  5. Li JN, Li DN, Su YH, Yan X, Wang F, Yu LL, Ma XJ (2022) Efficient and economical production of polyhydroxyalkanoate from sustainable rubber wood hydrolysate and xylose as co-substrate by mixed microbial cultures. Bioresource Technol 355:127238. https://doi.org/10.1016/j.biortech.2022.127238

    Article  CAS  Google Scholar 

  6. Arifin W, Kuboki T (2018) Effects of glass fibers on mechanical and thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Polym Compos 39:491–503. https://doi.org/10.1002/pc.23960

    Article  CAS  Google Scholar 

  7. Qiu YJ, Ma XJ (2019) Crystallization, mechanical and UV protection properties of graphene oxide/poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biocomposites. J Mater Sci 54:14388–14399. https://doi.org/10.1007/s10853-019-03951-5

    Article  CAS  Google Scholar 

  8. Sergey K, Maria G, Konstantin B, Aleksandr V (2021) Differences in the physicochemical properties of lignins in the heartwood and sapwood of Pinus sylvestris. J Wood Chem Technol 41:177–184. https://doi.org/10.1080/02773813.2021.1954951

    Article  CAS  Google Scholar 

  9. Fernandes EG, Pietrini M, Chiellini E (2004) Bio-based polymeric composites comprising wood flour as filler. Biomacromol 5:1200–1204. https://doi.org/10.1021/bm034507o

    Article  CAS  Google Scholar 

  10. Xiong SJ, Pang B, Zhou SJ, Li MK, Yang S (2020) Economically competitive biodegradable PBAT/lignin composites: effect of lignin methylation and compatibilizer. ACS Sustainable Chem Eng 8:5338–5346. https://doi.org/10.1021/acssuschemeng.0c00789

    Article  CAS  Google Scholar 

  11. Vostrejs P, Adamcová D, Vaverková MD, Enev V, Kalina M (2020) Active biodegradable packaging films modified with grape seeds lignin. RSC Adv 10:29202–29213. https://doi.org/10.1039/d0ra04074f

    Article  CAS  Google Scholar 

  12. Zhou WP, Chen FG, Zhang H, Wang J (2017) Preparation of a polyhydric aminated lignin and its use in the preparation of polyurethane film. J Wood Chem Technol 37:323–333. https://doi.org/10.1080/02773813.2017.1299185

    Article  CAS  Google Scholar 

  13. Stephanie BH, Ulrike WT, Nathan L, Jorgen L (2017) Characteristic properties of organosolv lignin/ polylactide copolymers. J Wood Chem Technol 37:211–224. https://doi.org/10.1080/02773813.2016.1272124

    Article  CAS  Google Scholar 

  14. Zhang Y, Zhou S, Fang X, Zhou X, Wang J, Bai F, Peng S (2019) Renewable and flexible uv-blocking film from poly(butylene succinate) and lignin. Eur Polym J 116:265–274. https://doi.org/10.1016/j.eurpolymj.2019.04.003

    Article  CAS  Google Scholar 

  15. Guo J, Chen X, Wang J, He Y, Xie H (2019) The influence of compatibility on the structure and properties of PLA/Lignin biocomposites by chemical modification. Polymers 12:56. https://doi.org/10.3390/polym12010056

    Article  CAS  Google Scholar 

  16. Huang JB, Guo Q, Zhu RN, Liu YY, Xu F (2021) Facile fabrication of transparent lignin sphere/PVA nanocomposite films with excellent UV-shielding and high strength performance. Inter J Bio Macromo 189:635–640. https://doi.org/10.1016/j.ijbiomac.2021.08.167

    Article  CAS  Google Scholar 

  17. Wang H, Wang YY, Fu FB, Qian Y, Xiao YH (2020) Controlled preparation of lignin/titanium dioxide hybrid composite particleswith excellent UVaging resistance and its high value application. Inter J Bio Macromo 150:371–379. https://doi.org/10.1016/j.ijbiomac.2019.12.185

    Article  CAS  Google Scholar 

  18. Lugoloobi I, Li X, Zhang YC, Mao ZP, Wang BJ (2020) Fabrication of lignin/poly(3-hydroxybutyrate) nanocomposites with enhanced properties via a Pickering emulsion approach. Inter J Bio Macromo 165:3078–3087. https://doi.org/10.1016/j.ijbiomac.2020.10.156

    Article  CAS  Google Scholar 

  19. Zhang S, Xiao J, Wang G, Chen G (2020) Enzymatic hydrolysis of lignin by ligninolytic enzymes and analysis of the hydrolyzed lignin products. Bioresour Technol 304:122975. https://doi.org/10.1016/j.biortech.2020.122975

    Article  CAS  Google Scholar 

  20. Sheng Y, Lam SS, Wu Y, Ge S, Wu J (2021) Enzymatic conversion of pretreated lignocellulosic biomass: A review on influence of structural changes of lignin. Bioresour Technol 324:124631. https://doi.org/10.1016/j.biortech.2020.124631

    Article  CAS  Google Scholar 

  21. Dong J, Zhou W, Su Y, Ma X (2020) Enhanced mechanical, thermal, and barrier properties of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)/montmorillonite nanocomposites using silane coupling agent. Polym compos 41:4538–4549. https://doi.org/10.1002/pc.25731

    Article  CAS  Google Scholar 

  22. Vandewijngaarden J, Murariu M, Dubois P, Carleer R, Yperman J (2014) Gas permeability properties of poly(3-hydroxybutyrate-co-3hydroxyhexanoate). J Polym Environ 22:501–507. https://doi.org/10.1007/s10924-014-0688-1

    Article  CAS  Google Scholar 

  23. Gulcin İ (2020) Antioxidants and antioxidant methods: an updated overview. Arch of Toxicol 94:651–715. https://doi.org/10.1007/s00204-020-02689-3

    Article  CAS  Google Scholar 

  24. Jiang B, Zhang Y, Zhao H, Guo T, Wu W (2019) Structure-antioxidant activity relationship of active oxygen catalytic lignin and lignin-carbohydrate complex. Int J Biol Macromol 139:21–29. https://doi.org/10.1016/j.ijbiomac.2019.07.134

    Article  CAS  Google Scholar 

  25. An L, Wang G, Jia H, Liu C, Sui W (2017) Fractionation of enzymatic hydrolysis lignin by sequential extraction for enhancing antioxidant performance. Int J Biol Macromol 99:674–681. https://doi.org/10.1016/j.ijbiomac.2017.03.015

    Article  CAS  Google Scholar 

  26. Spiridon I, Tanase CE (2018) Design, characterization and preliminary biological evaluation of new lignin-PLA biocomposites. Int J Biol Macromol 114:855–863. https://doi.org/10.1016/j.ijbiomac.2018.03.140

    Article  CAS  Google Scholar 

  27. Kumar A, Tumu VR, Chowdhury SR, SVS RR (2019) A green physical approach to compatibilize a bio-based poly (lactic acid)/lignin blend for better mechanical, thermal and degradation properties. Int J Biol Macromol 121:588–600. https://doi.org/10.1016/j.ijbiomac.2018.10.057

    Article  CAS  Google Scholar 

  28. Rahman MA, Santis DD, Spagnoli G, Ramorino G, Penco M (2013) Biocomposites based on lignin and plasticized poly(L-lactic acid). J Appl Poly Sci 129:202–214. https://doi.org/10.1002/app.38705

    Article  CAS  Google Scholar 

  29. Ikai A, Afrin R, Saito M, Watanabe-Nakayama T (2018) Atomic force microscope as a nano- and micrometer scale biological manipulator: A short review. Semin Cell Dev Biol 73:132–144. https://doi.org/10.1016/j.semcdb.2017.07.031

    Article  Google Scholar 

  30. Chen R, Abdelwahab MA, Misra M, Mohanty AK (2014) Biobased ternary blends of lignin, poly(Lactic Acid), and poly(Butylene Adipate-co-Terephthalate): the effect of lignin heterogeneity on blend morphology and compatibility. J Polym Environ 22:439–448. https://doi.org/10.1007/s10924-014-0704-5

    Article  CAS  Google Scholar 

  31. Mousavioun P, Doherty WOS, George G (2010) Thermal stability and miscibility of poly(hydroxybutyrate) and soda lignin blends. Ind Crops Prod 32:656–661. https://doi.org/10.1016/j.indcrop.2010.08.001

    Article  CAS  Google Scholar 

  32. Puglia D, Fortunati E, D’amico DA, Manfredi LB, Cyras VP (2014) Influence of organically modified clays on the properties and disintegrability in compost of solution cast poly(3-hydroxybutyrate) films. Polym Degrad Stabil 99:127–135. https://doi.org/10.1016/j.polymdegradstab.2013.11.013

    Article  CAS  Google Scholar 

  33. Luo S, Cao J, Mcdonald AG (2017) Esterification of industrial lignin and its effect on the resulting poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or polypropylene blends. Ind Crops Prod 97:281–291. https://doi.org/10.1016/j.indcrop.2016.12.024

    Article  CAS  Google Scholar 

  34. Zhou J, Ma XJ, Li JN, Zhu LZ (2018) Preparation and characterization of a bionanocomposite from poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) and cellulose nanocrystals. Cellulose 26:979–990. https://doi.org/10.1007/s10570-018-2136-1

    Article  CAS  Google Scholar 

  35. Morandim-Giannetti AA, Agnelli JAM, Lanças BZ, Magnabosco R, Casarin SA (2012) Lignin as additive in polypropylene/coir composites: thermal, mechanical and morphological properties. Carbohydr Polym 87:2563–2568. https://doi.org/10.1016/j.carbpol.2011.11.041

    Article  CAS  Google Scholar 

  36. Wu CQ, Zhang XZ, Wang XH, Gao QW, Li XN (2019) Surface modification of cellulose nanocrystal using succinic anhydride and its effects on poly(butylene succinate) based composites. Cellulose 26:3167–3181. https://doi.org/10.1007/s10570-019-02292-5

    Article  CAS  Google Scholar 

  37. Tang L, Qiu ZB (2016) Crystallization behavior and mechanical properties of biodegradable poly(L-lactide)/trisilanolisobutyl-polyhedral oligomeric silsesquioxanes nanocomposite. J Nanosci Nanotechno 16:10015–10020. https://doi.org/10.1166/jnn.2016.12371

    Article  CAS  Google Scholar 

  38. Kovalcik A, Machovsky M, Kozakova Z, Koller M (2015) Designing packaging materials with viscoelastic and gas barrier properties by optimized processing of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with lignin. React Funct Polym 94:25–34. https://doi.org/10.1016/j.reactfunctpolym.2015.07.001

    Article  CAS  Google Scholar 

  39. Li X, Hegyesi N, Zhang Y, Mao Z, Feng X (2019) Poly(lactic acid)/lignin blends prepared with the Pickering emulsion template method. Eur Polym J 110:378–384. https://doi.org/10.1016/j.eurpolymj.2018.12.001

    Article  CAS  Google Scholar 

  40. Yang WJ, Weng YX, Debora P, Qi GC, Dong WD (2020) Poly(lactic acid)/lignin films with enhanced toughness and anti-oxidation performance for active food packaging. Int J Biol Macromol 144:102–110. https://doi.org/10.1016/j.ijbiomac.2019.12.085

    Article  CAS  Google Scholar 

  41. Evie LP, Uttam CP, Thi NT, Giulia S, Luca C (2019) Sustainable active food packaging from poly(lactic acid) and cocoa bean shells. ACS Appl Mater Inter 11:31317–31327. https://doi.org/10.1021/acsami.9b09755

    Article  CAS  Google Scholar 

  42. Wu Y, Qian Y, Zhang A, Lou H, Yang D (2020) Light color dihydroxybenzophenone grafted lignin with high UVA/ UVB absorbance ratio for efficient and safe natural sunscreen. Ind Eng Chem Res 59:17057–17068. https://doi.org/10.1021/acs.iecr.9b06970

    Article  CAS  Google Scholar 

  43. Zhou YJ, Qian Y, Wang JY, Qiu XQ, Zeng HB (2020) Bioinspired lignin-polydopamine nanocapsules with strong bioadhesion for long-acting and high-performance natural sunscreens. Biomacromol 21:3231–3241. https://doi.org/10.1021/acs.biomac.0c00696

    Article  CAS  Google Scholar 

  44. Monirsadat M, Mohammad RA, Leila K (2020) Antioxidant, antiradical, and antimicrobial activities of polysaccharides obtained by microwave-assisted extraction method: A review. Carbohydr Polym 229:115421. https://doi.org/10.1016/j.carbpol.2019.115421

    Article  CAS  Google Scholar 

  45. Juan O, Antonio C, Elena OM, Antonio G, Alfonso AA (2021) Antimicrobial and antioxidant activities of flavonoids isolated from wood of sweet cherry tree (Prunus avium L.). J Wood Chem Technol 41:104–117. https://doi.org/10.1080/02773813.2021.1910712

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Natural Science Foundation of Fujian Province (2022J01981) and Natural Science Foundation of Tianjin City (18JCYBJC90100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Ma.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare that are relevant to the content of the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 260 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Jiang, T., Dong, J. et al. Fabrication of high-performance lignin/PHBH biocomposites with excellent thermal, barrier and UV-shielding properties. J Polym Res 29, 517 (2022). https://doi.org/10.1007/s10965-022-03378-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03378-8

Keywords

Navigation