Skip to main content

Enhanced structural, optical, electrical properties and antibacterial activity of PEO/CMC doped ZnO nanorods for energy storage and food packaging applications

Abstract

The zinc oxide nanorods (ZnONRs) have been successfully prepared via sol–gel way. A series of Poly(ethylene oxide) and Carboxymethyl cellulose (PEO/CMC) blend samples filled with different concentration of ZnONRs were prepared using casting method. Transmission electron microscopic (TEM) image showed that the synthesized ZnONPs had a diameter in the range of 29.29 to 59.09 nm. These samples were characterized by different analytical techniques. On the basis of results obtained from XRD and FT-IR analysis, blends are miscible. Fourier transform infrared (FT-IR) spectroscopy exhibited the complexation between PEO/CMC blend and ZnONRs. The optical energy gap was calculated using the UV/vis. data. The maximum value of AC conductivity for the pure blend was 1.98 × 10–7 S.cm−1, and by raising the filling of ZnONRs increased to 3.26 × 10–6 S.cm−1 at highest concentration. After the added of ZnONRs, an improvement for the dielectric constant (ε′) and dielectric loss (ɛ") of PEO/CMC are detected. These samples can be employment in the semiconductor industries and portable electrochemical batteries, electric vehicles and grid energy storage, due to the noticed enhancements in optical, and AC conductivity. PEO/CMC/ZnONRs films were screened for their in vitro antibacterial activity against S. aureus and E. coli bacteria have been tested. The excellent antimicrobial activity of these films provides a novel and simple way for the synthesis nanocomposites as functional biomaterials and has the possibility for usage in food packaging applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Yuan S, Shen F, Chua CK, Zhou K (2019) Prog Polym Sci 91:141–168

    CAS  Article  Google Scholar 

  2. Patrick A, Glasse M, Latham R, Linford R (1986) Solid State Ionics 18–19:1063–1067

    Article  Google Scholar 

  3. Alshehari AM, Salim E, Oraby AH (2021) J Market Res 15:5615–5622

    CAS  Google Scholar 

  4. Morsi MA, Asnag GM, Rajeh A, Awwad NS (2021) Compos Commun 24:100662

  5. Abdelghany AM, Oraby AH, Asnag GM (2019) J Mol Struct 1180:15–25

    CAS  Article  Google Scholar 

  6. Tominaga Y, Ohno H (2000) Electrochim Acta 45:3081–3086

    CAS  Article  Google Scholar 

  7. Jinisha B, Anilkumar KM, Manoj M, Pradeep VS, Jayalekshmi S (2017) Electrochim Acta 235:210–222

    CAS  Article  Google Scholar 

  8. Kumar KN, Vijayalakshmi L, Choi J (2019) Optik 183:805–812

    Article  Google Scholar 

  9. Dhatarwal P, Sengwa RJ (2021) Compos Interfaces 28(8):827–842

    CAS  Article  Google Scholar 

  10. Asnag GM, Oraby AH, Abdelghany AM (2019) Compos B 172:436–446

    CAS  Article  Google Scholar 

  11. Abutalib MM (2019) Physica B 557:108–116

    CAS  Article  Google Scholar 

  12. Dhatarwa P, Sengwa RJ (2021) Optik - Int J Light Electron Optics 233:166594

  13. Abdelrazek EM, Abdelghany AM, Badr SI, Morsi MA (2016) Res J Pharm Biol Chem Sci 7:1877–1890

    CAS  Google Scholar 

  14. Hea J-R, Zhua J-J, Yina S-W, Yang X-Q (2022) Food Hydrocoll 122:107076

  15. Qiao F, Sun K, Liu W, Xie Y, Chu H (2022) Vacuum 196:110788

  16. Karpuraranjith M, Thambidurai S (2017) Int J Biol Macromol 104:1753–1761

    CAS  Article  Google Scholar 

  17. Asnag GM, Awwad NS, Ibrahium HA, Moustapha ME, Alqahtani MS, Menazea AA (2022) J Inorg Organomet Polym Mater 1–9

  18. Zagal-Padilla CK, García-Sandoval J, Gamboa SA (2022) J Alloys Compd 891:162087

  19. Gondaliya N, Kanchan D, Sharma P, Joge P (2011) Mater Sci Appl 2:1639–1643

    CAS  Google Scholar 

  20. Xu Y, Li J, Li W (2022) Coll Surf A: Physicochem Eng Aspects 632:127773

  21. Meikhail MS, Oraby AH, Farea MO, Abdelghany AM (2014) Biol Chem Sci 5:976–983

    Google Scholar 

  22. Patel G, Sureshkumar MB, Patel P (2015) Sci Res Pub 4:9–24

    Google Scholar 

  23. El Sayed AM, Saber S (2022) J Phys Chem Solids 163:110590

  24. Hameed ST, Qahtan TF, Abdelghany AM, Oraby AH (2022) Phys B: Condens Matter 633:413771

  25. Ezati P, Riahi Z, Rhim JW (2022) Food Hydrocoll 122:107104

  26. Huang J, Yang H, Chen M, Ji T, Hou Z, Wu M (2017) Polym Testing 59:212–219

    CAS  Article  Google Scholar 

  27. Atta MR, Alsulami QA, Asnag GM, Rajeh A (2021) J Mater Sci: Mater Electron 32(8):10443–10457

    CAS  Google Scholar 

  28. Abdelrazek EM, Asnag GM, Oraby AH, Abdelghany AM, Alshehari AM, Gumaan MS (2020) J Electron Mater 49:6107–6122

    CAS  Article  Google Scholar 

  29. Abutalib MM, Rajeh A (2020) J Mater Sci: Mater Electron 31:9430–9442

    CAS  Google Scholar 

  30. Atta MR, Algethami N, Farea MO, Alsulami QA, Rajeh A (2022). Int J Energy Res. https://doi.org/10.1002/er.7703

    Article  Google Scholar 

  31. Frade T, Bouzon V, Gomes A, da Silva Pereira MI (2010) Surf Coat Technol 204:3592–3598

  32. Manshad AK, Alib JA, Haghighi OM, Sajadid SM, Keshavarz A (2022) Fuel 307(1):121927

  33. Awwad NS, Abd El-Kader MFH, Ibrahium HA, Asnag GM, Morsi MA (2021) Compos Commun 24:100678

  34. Abutalib MM, Rajeh A (2020) J Organomet Chem 918:121309

  35. Demirezen S, Çetinkaya HG, Altındal Ş (2022) Silicon 1–11

  36. Mathew S (2022) J Non Cryst Solids 577:121321‏

  37. Abdelghany AM, Farea MO, Oraby AH (2021) J Mater Sci: Mater Electron 32:6538–6549

    CAS  Google Scholar 

  38. Enachi M, Lupan O, Braniste TT, Sarua A, Chow L, Mishra YK et al (2015) Phys Status Solidi (RRL)–Rapid Res Lett 9(3):171–174

  39. Morsi MA, Abdelaziz M, Oraby AH, Mokhles I (2019) J Phys Chem Solids 125:103–114

    CAS  Article  Google Scholar 

  40. Abdelhamied MM, Abdelreheem AM, Atta A (2022) Plast Rubber Compos 51(1):1–12

    CAS  Article  Google Scholar 

  41. Agrawal SL, Singh M, Asthana N, Dwivedi MM, Pandey K (2011) Int J Polym Mater Polym Biomater 60:276–289

    CAS  Article  Google Scholar 

  42. Ayesh AS (2008) J Thermoplast Compos Mater 21(4):309–322

    CAS  Article  Google Scholar 

  43. Aziz SB (2015) Bull Mater Sci 38(6):1597–1602

    CAS  Article  Google Scholar 

  44. Farea MO, Abdelghany AM, Meikhail MS, Oraby AH (2020) J Market Res 9(2):1530–1538

    CAS  Google Scholar 

  45. Abdeen ZI, El-Farargy AF, Negm NA (2018) J Mol Liq 250:335–343

    CAS  Article  Google Scholar 

  46. Tekin D, Birhan D, Kiziltas H (2020) Mater Chem Phys 251:123067

Download references

Funding

The authors extend their sincere appreciation to researchers supporting project number (RSP-2021/129), King Saud University, Riyadh, Saudi Arabia for funding this research.

Author information

Authors and Affiliations

Authors

Contributions

A.E. Tarabiah: Methodology, Project administration, Data curation. Hisham A. Alhadlaq: Writing—original draft. ZabnAllah M. Alaizeri: Conceptualization, Investigation. Abdullah A. A. Ahmed: Formal analysis, Resources. G.M. Asnag: Supervision, Writing—original draft. Maqusood Ahamed: Supervision, Writing- review & editing.

Corresponding authors

Correspondence to G. M. Asnag or Maqusood Ahamed.

Ethics declarations

Informed consent

All the authors consent for submitting it to Journal of Journal of Polymer Research for publication.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tarabiah, A.E., Alhadlaq, H.A., Alaizeri, Z.M. et al. Enhanced structural, optical, electrical properties and antibacterial activity of PEO/CMC doped ZnO nanorods for energy storage and food packaging applications. J Polym Res 29, 167 (2022). https://doi.org/10.1007/s10965-022-03011-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03011-8

Keywords

  • ZnONRs
  • PEO
  • CMC
  • AC conductivity
  • Dielectric properties
  • Antibacterial activity