Abstract
Isothermal crystallization kinetics are performed in poly(butylene succinate-co-propylene succinate) (PBSPS) in a BS/PS ratio of 10/0(PBS) to 7/3 with 0 and 0.02 mol% glycerol, indicating PBSPS copolymers are 3D growths initiated by heterogeneous nucleation. Crystallization growth rates of BS/PS = 10/0(PBS) to 7/3 with 0.02 mol% glycerol are faster than with 0 mol% glycerol, for a given temperature range. Nonisothermal crystallization kinetics are performed to clarify the effects of different glycerol proportions for BS/PS = 7/3. The 0.01 mol% glycerol is used to form a nucleation site, in which the kinetic energy of the molecular chain can be driven to increase the packing ability. When glycerol is increased to 0.02 mol%, the restriction of the glycerol on the movement of the molecular chain becomes more extensive to decrease the relative crystallinity. Hence, a small amount of glycerol content can improve the relative crystallinity and crystallization rate of PBSPS copolymer.
This is a preview of subscription content, access via your institution.











References
- 1.
Väisänen T, Das O, Tomppo L (2017) A review on new bio-based constituents for natural fiber-polymer composites. J Clean Prod 149:582–596. https://doi.org/10.1016/j.jclepro.2017.02.132
- 2.
Spierling S, Knüpffer E, Behnsen H et al (2018) Bio-based plastics - A review of environmental, social and economic impact assessments. J Clean Prod 185:476–491. https://doi.org/10.1016/j.jclepro.2018.03.014
- 3.
Kawaguchi H, Hasunuma T, Ogino C, Kondo A (2016) Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks. Curr Opin Biotechnol 42:30–39. https://doi.org/10.1016/j.copbio.2016.02.031
- 4.
Babu RP, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2:8. https://doi.org/10.1186/2194-0517-2-8
- 5.
Avella M, Buzarovska A, Errico M et al (2009) Eco-Challenges of Bio-Based Polymer Composites Materials 2:911–925. https://doi.org/10.3390/ma2030911
- 6.
Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559. https://doi.org/10.1039/C5PY00263J
- 7.
Mekonnen T, Mussone P, Khalil H, Bressler D (2013) Progress in bio-based plastics and plasticizing modifications. J Mater Chem A 1:13379. https://doi.org/10.1039/c3ta12555f
- 8.
McKinlay JB, Vieille C, Zeikus JG (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76:727–740. https://doi.org/10.1007/s00253-007-1057-y
- 9.
Zia KM, Noreen A, Zuber M et al (2016) Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review. Int J Biol Macromol 82:1028–1040. https://doi.org/10.1016/j.ijbiomac.2015.10.040
- 10.
Johansson C, Bras J, Mondragon I et al (2012) Renewable Fibers and Bio-based Materials for Packaging Applications – A Review of Recent Developments. BioResources 7:2506–2552. https://doi.org/10.15376/biores.7.2.2506-2552
- 11.
Hottle TA, Bilec MM, Landis AE (2013) Sustainability assessments of bio-based polymers. Polym Degrad Stab 98:1898–1907. https://doi.org/10.1016/j.polymdegradstab.2013.06.016
- 12.
Álvarez-Chávez CR, Edwards S, Moure-Eraso R, Geiser K (2012) Sustainability of bio-based plastics: general comparative analysis and recommendations for improvement. J Clean Prod 23:47–56. https://doi.org/10.1016/j.jclepro.2011.10.003
- 13.
Yin G-Z, Yang X-M (2020) Biodegradable polymers: a cure for the planet, but a long way to go. J Polym Res 27:38. https://doi.org/10.1007/s10965-020-2004-1
- 14.
Papageorgiou GZ, Bikiaris DN (2005) Crystallization and melting behavior of three biodegradable poly(alkylene succinates). A comparative study Polymer 46:12081–12092. https://doi.org/10.1016/j.polymer.2005.10.073
- 15.
Papageorgiou GZ, Achilias DS, Bikiaris DN (2007) Crystallization Kinetics of Biodegradable Poly(butylene succinate) under Isothermal and Non-Isothermal Conditions. Macromol Chem Phys 208:1250–1264. https://doi.org/10.1002/macp.200700084
- 16.
Jin T, Zhou M, Hu S et al (2014) Effect of molecular weight on the properties of poly(butylene succinate). Chin J Polym Sci 32:953–960. https://doi.org/10.1007/s10118-014-1463-4
- 17.
Yoo ES, Im SS (1999) Melting behavior of poly(butylene succinate) during heating scan by DSC. J Polym Sci Part B Polym Phys 37:1357–1366
- 18.
Xu J, Guo B-H (2010) Microbial Succinic Acid, Its Polymer Poly(butylene succinate), and Applications. In: Chen GG-Q (ed) Plastics from Bacteria. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 347–388
- 19.
Xu J, Guo B-H (2010) Poly(butylene succinate) and its copolymers: Research, development and industrialization. Biotechnol J 5:1149–1163. https://doi.org/10.1002/biot.201000136
- 20.
Gigli M, Fabbri M, Lotti N et al (2016) Poly(butylene succinate)-based polyesters for biomedical applications: A review. Eur Polym J 75:431–460. https://doi.org/10.1016/j.eurpolymj.2016.01.016
- 21.
Gan Z, Abe H, Kurokawa H, Doi Y (2001) Solid-State Microstructures, Thermal Properties, and Crystallization of Biodegradable Poly(butylene succinate) (PBS) and Its Copolyesters. Biomacromol 2:605–613. https://doi.org/10.1021/bm015535e
- 22.
Yang Y, Qiu Z (2011) Crystallization kinetics and morphology of biodegradable poly(butylene succinate-co-ethylene succinate) copolyesters: effects of comonomer composition and crystallization temperature. CrystEngComm 13:2408. https://doi.org/10.1039/c0ce00598c
- 23.
Liu F-Y, Xu C-L, Zeng J-B et al (2013) Non-isothermal crystallization kinetics of biodegradable poly(butylene succinate-co-diethylene glycol succinate) copolymers. Thermochim Acta 568:38–45. https://doi.org/10.1016/j.tca.2013.06.025
- 24.
Wang G, Qiu Z (2012) Synthesis, Crystallization Kinetics, and Morphology of Novel Biodegradable Poly(butylene succinate-co-hexamethylene succinate) Copolyesters. Ind Eng Chem Res 51:16369–16376. https://doi.org/10.1021/ie302817k
- 25.
Dai X, Qiu Z (2017) Crystallization kinetics, morphology, and hydrolytic degradation of novel biobased poly(butylene succinate-co-decamethylene succinate) copolyesters. Polym Degrad Stab 137:197–204. https://doi.org/10.1016/j.polymdegradstab.2017.01.020
- 26.
Chen C-H, Yang C-S, Chen M et al (2011) Synthesis and characterization of novel poly(butylene succinate-co-2-methyl-1,3-propylene succinate)s. Express Polym Lett 5:284–294. https://doi.org/10.3144/expresspolymlett.2011.29
- 27.
Lu J-S, Chen M, Lu S-F, Chen C-H (2011) Nonisothermal crystallization kinetics of novel biodegradable poly(butylene succinate-co-2-methyl-1,3-propylene succinate)s. J Polym Res 18:1527–1537. https://doi.org/10.1007/s10965-010-9558-2
- 28.
Xie W-J, Zhou X-M (2015) Non-isothermal crystallization kinetics and characterization of biodegradable poly(butylene succinate-co-neopentyl glycol succinate) copolyesters. Mater Sci Eng C 46:366–373. https://doi.org/10.1016/j.msec.2014.10.063
- 29.
Bikiaris DN, Papageorgiou GZ, Papadimitriou SA et al (2009) Novel Biodegradable Polyester Poly(Propylene Succinate): Synthesis and Application in the Preparation of Solid Dispersions and Nanoparticles of a Water-Soluble Drug. AAPS PharmSciTech 10:138–146. https://doi.org/10.1208/s12249-008-9184-z
- 30.
Bikiaris DN, Achilias DS (2006) Synthesis of poly(alkylene succinate) biodegradable polyesters I. Mathematical modelling of the esterification reaction. Polymer 47:4851–4860. https://doi.org/10.1016/j.polymer.2006.04.044
- 31.
Chrissafis K, Paraskevopoulos KM, Bikiaris DN (2006) Thermal degradation kinetics of the biodegradable aliphatic polyester, poly(propylene succinate). Polym Degrad Stab 91:60–68. https://doi.org/10.1016/j.polymdegradstab.2005.04.028
- 32.
Papageorgiou GZ, Bikiaris DN (2007) Synthesis, Cocrystallization, and Enzymatic Degradation of Novel Poly(butylene- co -propylene succinate) Copolymers. Biomacromol 8:2437–2449. https://doi.org/10.1021/bm0703113
- 33.
Xu Y, Xu J, Liu D et al (2008) Synthesis and characterization of biodegradable poly(butylene succinate-co-propylene succinate)s. J Appl Polym Sci 109:1881–1889. https://doi.org/10.1002/app.24544
- 34.
Xu Y, Xu J, Guo B, Xie X (2007) Crystallization kinetics and morphology of biodegradable poly(butylene succinate-co-propylene succinate)s. J Polym Sci Part B Polym Phys 45:420–428. https://doi.org/10.1002/polb.20877
- 35.
Lu S-F, Chen M, Shih Y-C, Chen CH (2010) Nonisothermal crystallization kinetics of biodegradable poly(butylene succinate-co-propylene succinate)s. J Polym Sci Part B Polym Phys 48:1299–1308. https://doi.org/10.1002/polb.22027
- 36.
Chan H, Cho C, Hsu K et al (2019) Smart Wearable Textiles with Breathable Properties and Repeatable Shaping in In Vitro Orthopedic Support from a Novel Biomass Thermoplastic Copolyester. Macromol Mater Eng 304:1900103. https://doi.org/10.1002/mame.201900103
- 37.
Chen C-W, Hsu T-S, Rwei S-P (2019) Effect of Ethylenediaminetetraacetic Acid on Unsaturated Poly(Butylene Adipate-Co-Butylene Itaconate) Copolyester with Low-Melting Point and Controllable Hardness. Polymers 11:611. https://doi.org/10.3390/polym11040611
- 38.
Cho C-J, Chang Y-S, Lin Y-Z et al (2020) Green electrospun nanofiber membranes filter prepared from novel biomass thermoplastic copolyester: Morphologies and filtration properties. J Taiwan Inst Chem Eng 106:206–214. https://doi.org/10.1016/j.jtice.2019.11.002
- 39.
Chen C-W, Hsu T-S, Huang K-W, Rwei S-P (2020) Effect of 1,2,4,5-Benzenetetracarboxylic Acid on Unsaturated Poly(butylene adipate-co-butylene itaconate) Copolyesters: Synthesis, Non-Isothermal Crystallization Kinetics. Thermal and Mechanical Properties Polymers 12:1160. https://doi.org/10.3390/polym12051160
- 40.
Hsu K-H, Chen C-W, Wang L-Y et al (2019) Bio-based thermoplastic poly(butylene succinate-co-propylene succinate) copolyesters: effect of glycerol on thermal and mechanical properties. Soft Matter 15:9710–9720. https://doi.org/10.1039/C9SM01958H
- 41.
Liu G-C, Zhang W-Q, Zhou S-L et al (2016) Improving crystallization and processability of PBS via slight cross-linking. RSC Adv 6:68942–68951. https://doi.org/10.1039/C6RA13488B
- 42.
Liu G-C, Zhang W-Q, Wang X-L, Wang Y-Z (2017) Synthesis and performances of poly(butylene-succinate) with enhanced viscosity and crystallization rate via introducing a small amount of diacetylene groups. Chin Chem Lett 28:354–357. https://doi.org/10.1016/j.cclet.2016.10.014
- 43.
Ma P, Ma Z, Dong W et al (2013) Structure/Property Relationships of Partially Crosslinked Poly(butylene succinate). Macromol Mater Eng 298:910–918. https://doi.org/10.1002/mame.201200209
- 44.
Avrami M (1940) Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei. J Chem Phys 8:212–224. https://doi.org/10.1063/1.1750631
- 45.
Pivsa-Art W, Fujii K, Nomura K, Aso Y, Ohara H, Yamane H (2016) Isothermal crystallization kinetics of talc-filled poly(lactic acid) and poly(butylene succinate) blends. J Polym Res 23:144. https://doi.org/10.1007/s10965-016-1045-y
- 46.
Liu T, Mo Z, Wang S, Zhang H (1997) Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci 37:568–575. https://doi.org/10.1002/pen.11700
- 47.
Durmus A, Yalçınyuva T (2009) Effects of additives on non-isothermal crystallization kinetics and morphology of isotactic polypropylene. J Polym Res 16:489–498. https://doi.org/10.1007/s10965-008-9252-9
- 48.
Chen C-W, Hsu T-S, Rwei S-P (2020) Isothermal Kinetics of Poly(butylene adipate-co-butylene itaconate) Copolyesters with Ethylenediaminetetraacetic Acid. ACS Omega 5:3080–3089. https://doi.org/10.1021/acsomega.9b04315
Acknowledgments
The authors gratefully acknowledge the financial support from the Ministry of Science and Technology of Taiwan (MOST 109-2634-F-027-001), (MOST 109-2622-E-027-004 -CC3), and (MOST 109-2221-E-027 -114 -MY3).
Author information
Affiliations
Corresponding authors
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Mao, HI., Wang, LY., Chen, CW. et al. Enhanced crystallization rate of bio-based poly(butylene succinate-co-propylene succinate) copolymers motivated by glycerol. J Polym Res 28, 92 (2021). https://doi.org/10.1007/s10965-021-02460-x
Received:
Accepted:
Published:
Keywords
- Poly(butylene succinate-co-propylene succinate)
- Copolymer
- Glycerol
- Crosslinked