Treatment of hemp fibres for use in rotational moulding

Abstract

The benefit of using alkali-treated hemp fibre as the reinforcement for rotationally moulded polyethylene composites was evaluated in this research. Untreated and alkali-treated hemp fibre were characterised using different techniques such as scanning electron microscopy (SEM), thermal analysis, and Fourier transform infrared spectroscopy (FT-IR). These techniques showed that the alkali treatment removed non-cellulosic components from hemp fibres, which improved their separation and thermal resistance. Composites with alkali-treated fibre resisted the exposure to elevated temperatures for prolonged periods (characteristic of the rotational moulding process) with no apparent signs of thermal degradation, unlike when untreated fibre was used. The effect of using maleic anhydride grafted polyethylene (MAPE) as a coupling agent was also investigated. The addition of 3 wt% MAPE improved the properties tensile strength and Young's modulus of composites with treated hemp fibre, which was attributed to better fibre-matrix adhesion. Different fibre contents were assessed in this research to produce rotationally moulded composites; a poor fibre distribution was observed above 5 wt% fibre content, which resulted in low tensile strength and Young's modulus.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Crawford RJ (2012) Practical guide to rotational moulding. Smithers Rapra, Belfast, UK

    Google Scholar 

  2. 2.

    Crawford RJ, Throne JL (2001) Rotational molding technology. William Andrew, Belfast, UK

    Google Scholar 

  3. 3.

    Liu S-J, Peng K-M (2010) Rotational molding of polycarbonate reinforced polyethylene composites: Processing parameters and properties. Polym Eng Sci 50(7):1457–1465

    CAS  Article  Google Scholar 

  4. 4.

    López-Bañuelos RH, Moscoso FJ, Ortega-Gudiño P, Mendizabal E, Rodrigue D, González-Núñez R (2012) Rotational molding of polyethylene composites based on agave fibers. Polym Eng Sci 52(12):2489–2497

    Article  Google Scholar 

  5. 5.

    Wang B, Panigrahi S, Tabil L, Crerar WJ (2007) Pre-treatment of flax fibers for use in rotationally molded biocomposites. J Reinf Plast Compos 26(5):447–463

    CAS  Article  Google Scholar 

  6. 6.

    Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos A 83:98–112

    CAS  Article  Google Scholar 

  7. 7.

    Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33

    Article  Google Scholar 

  8. 8.

    Pickering K (2008) Properties and performance of natural-fibre composites. Elsevier, Cambridge England

    Google Scholar 

  9. 9.

    Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos B 43(7):2883–2892

    CAS  Article  Google Scholar 

  10. 10.

    Sawpan MA, Pickering KL, Fernyhough AJ (2011) Effect of various chemical treatments on the fibre structure and tensile properties of industrial hemp fibres. Compos A 42(8):888–895

    Article  Google Scholar 

  11. 11.

    Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: A review. Compos A 41(7):806–819

    Article  Google Scholar 

  12. 12.

    Liu H, You L, Jin H, Yu W (2013) Influence of alkali treatment on the structure and properties of hemp fibers. Fibers Polym 14(3):389–395

    CAS  Article  Google Scholar 

  13. 13.

    Chandrasekar M, Ishak M, Sapuan S, Leman Z, Jawaid MJ (2017) A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption. Plast, Rubber Compos 46(3):119–136

    CAS  Article  Google Scholar 

  14. 14.

    Manalo AC, Wani E, Zukarnain NA, Karunasena W, K-tJ L (2015) Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre–polyester composites. Compos B 80:73–83

    CAS  Article  Google Scholar 

  15. 15.

    Keener T, Stuart R, Brown T (2004) Maleated coupling agents for natural fibre composites. Compos A 35(3):357–362

    Article  Google Scholar 

  16. 16.

    Prachayawarakorn J, Khunsumled S, Thongpin C, Kositchaiyong A, Sombatsompop N (2008) Effects of silane and MAPE coupling agents on the properties and interfacial adhesion of wood-filled PVC/LDPE blend. J Appl Polym Sci 108(6):3523–3530

    CAS  Article  Google Scholar 

  17. 17.

    Cisneros-López EO, González-López ME, Pérez-Fonseca AA, González-Núñez R, Rodrigue D, Robledo-Ortíz JRJ (2017) Effect of fiber content and surface treatment on the mechanical properties of natural fiber composites produced by rotomolding. Compos Interfaces 24(1):35–53

    Article  Google Scholar 

  18. 18.

    Hanana FE, Chimeni DY, Rodrigue DJ (2018) Morphology and mechanical properties of maple reinforced LLDPE produced by rotational moulding: Effect of fibre content and surface treatment. Polym Compos 26(4):299–308

    CAS  Article  Google Scholar 

  19. 19.

    M.M. Kabir ⇑ HW, K.T. Lau, F. Cardona (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites.An overview. Composites: Part B 43:10

  20. 20.

    Mishra M (2018) Encyclopedia of Polymer Applications, 3 Volume Set. CRC Press

  21. 21.

    Pickering KL, Efendy MA (2016) Le TMJCPAAS, Manufacturing. A review of recent developments in natural fibre composites and their mechanical performance 83:98–112

    CAS  Google Scholar 

  22. 22.

    Prime RB, Bair HE, Vyazovkin S, Gallagher PK, Riga A (2009) Thermogravimetric analysis (TGA). Fundamentals and applications. John Wiley & Sons, Hoboken, NJ, Thermal analysis of polymers

    Google Scholar 

  23. 23.

    Efendy MA, Pickering KLJ (2014) Comparison of harakeke with hemp fibre as a potential reinforcement in composites. Compos A 67:259–267

    Article  Google Scholar 

  24. 24.

    Le Troedec M, Sedan D, Peyratout C, Bonnet JP, Smith A, Guinebretiere R, Gloaguen V, Krausz PJ (2008) Influence of various chemical treatments on the composition and structure of hemp fibres. Compos A 39(3):514–522

    Article  Google Scholar 

  25. 25.

    Kabir M, Wang H, Lau K, Cardona FJ (2013) Effects of chemical treatments on hemp fibre structure. Appl Surf Sci 276:13–23

    CAS  Article  Google Scholar 

  26. 26.

    Beckermann G (2007) Performance of hemp-fibre reinforced polypropylene composite materials. The University of Waikato

  27. 27.

    Islam M, Pickering K, Foreman N, Manufacturing, (2010) Influence of alkali treatment on the interfacial and physico-mechanical properties of industrial hemp fibre reinforced polylactic acid composites. Composites Part A: Applied Science 41(5):596–603

    Article  Google Scholar 

  28. 28.

    Fan M (2016) Naughton AJCPBE. Mechanisms of thermal decomposition of natural fibre composites 88:1–10

    CAS  Google Scholar 

  29. 29.

    Tomczak F, Satyanarayana KG, Sydenstricker THDJ (2007) Studies on lignocellulosic fibers of Brazil: Part III–Morphology and properties of Brazilian curauá fibers. Compos A 38(10):2227–2236

    Article  Google Scholar 

  30. 30.

    Kabir M, Wang H, Lau K, Cardona F, Aravinthan T (2012) Mechanical properties of chemically-treated hemp fibre reinforced sandwich composites. Compos B 43(2):159–169

    CAS  Article  Google Scholar 

  31. 31.

    Sgriccia N, Hawley M, Misra M (2008) Characterisation of natural fiber surfaces and natural fiber composites. Compos A 39(10):1632–1637

    Article  Google Scholar 

  32. 32.

    Shahzad AJJoCM (2012) Hemp fiber and its composites–a review. 46(8):973–986

  33. 33.

    Sawpan MA, Pickering KL, Fernyhough A Hemp fibre reinforced poly (lactic acid) composites. In: Advanced Materials Research, 2007. Trans Tech Publ, pp 337–340

  34. 34.

    Saheb DN, Jog JPJAiPTJotPPI (1999) Natural fiber polymer composites: a review. 18(4):351–363

  35. 35.

    Ortega Z, Monzón M, Benítez A, Kearns M, McCourt M, Hornsby PJ (2013) Banana and abaca fiber-reinforced plastic composites obtained by rotational molding process. Mater Manuf Processes 28(8):879–883

    CAS  Google Scholar 

  36. 36.

    Verdaguer A, Rodrigue D Effect of surface treatment on the mechanical properties of wood-plastics composites produced by dry-blending. In: Proceedings of the 72th Annual Technical Conference & Exhibition, 2014. Society of Plastics Engineers Las Vegas NV, pp 28–30

  37. 37.

    Torres FG, Aragon CL (2006) Final product testing of rotational moulded natural fibre-reinforced polyethylene. Polym Test 25(4):568–577

    CAS  Article  Google Scholar 

  38. 38.

    Keener T, Stuart R, Brown TJCPAas, manufacturing (2004) Maleated coupling agents for natural fibre composites. 35(3):357–362

  39. 39.

    Yang H-S, Wolcott MP, Kim H-S, Kim S, Kim H-JJCS (2007) Effect of different compatibilizing agents on the mechanical properties of lignocellulosic material filled polyethylene bio-composites. 79(3):369–375

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maria A. S. Oliveira.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oliveira, M.A.S., Pickering, K.L., Sunny, T. et al. Treatment of hemp fibres for use in rotational moulding. J Polym Res 28, 53 (2021). https://doi.org/10.1007/s10965-021-02414-3

Download citation

Keywords

  • Hemp fibre
  • Alkali treatment
  • MAPE
  • Polyethylene
  • Rotational moulding