Potency of nanolay on structural, mechanical and gas barrier properties of poly(ethylene terephthalate) Nanohybrid


Thermoplastic and amorphous poly(ethylene terephthalate)/clay nanohybrids have been prepared through solution route. Organically modified NK75 nanoclay has been used as filler in different concentrations to enhance the properties. The Young’s modulus has increased significantly (66%) though there is slight reduction in toughness. Halpin Tsai and Hui-Shia models have been fitted well to explain the nature of stiffness for the prediction of the modulus values. Vicker hardness test has shown considerable improved hardness (16%) in nanohybrids and are nicely predicted using the modified rule of mixture model. The effect of uniaxial stretching on the structural development is explored through small angle X-ray scattering and wide angle XRD. The nanoclay has induced short range ordering upon stretching in nanohybrids as compared to pure PET. Nanoclay has induced high barrier for gas permeation in nanohybrids in comparison to pristine PET. Oxygen transmission rate has also been found to decrease up to 38% for using meager amount of nanoclay. The experimental permeability data has been fitted with different models and has been found suitable for its real applications.

PET nanohybrid has been prepared with organically modified NK75 nanoclay showing much improved mechanical, thermal and gas barrier properties as compared to commercially available nanoclay composites. Theoretical prediction has been made from the experimental results.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Scaffaro R, Botta L, Ceraulo M, La Mantia FP (2011) Effect of kind and content of organo modified clay on properties of PET nanohybrids. J Appl Polym Sci 122(1):384–392

    CAS  Article  Google Scholar 

  2. 2.

    Gökkurt T, Durmus A, Sariboga V, Öksüzömer MA (2013) Investigation of thermal, rheological, and physical properties of amorphous poly (ethylene terephthalate)/organoclay nanohybrid films. J Appl Polym Sci 129(5):2490–2501

    Article  Google Scholar 

  3. 3.

    Nguyen QT, Baird DG (2006) Preparation of polymer–clay nanohybrids and their properties. Adv Polym Technol 25(4):270–285

    CAS  Article  Google Scholar 

  4. 4.

    Sarkar M, Dana K, Mukhopadhyay TK, Ghatak S (2011) Studies on the suitability of iron-rich Indian bentonites for synthesis of organoclays by intercalation. T Indian Ceram Soc 70(1):23–28

    CAS  Article  Google Scholar 

  5. 5.

    Kapusetti G, Misra N, Singh V, Srivastava S, Roy P, Dana K, Maiti P (2014) Bone cement based nanohybrid as a super biomaterial for bone healing. J Mater Chem B 2(25):3984–3997

    CAS  Article  Google Scholar 

  6. 6.

    Liu J, Boo WJ, Clearfield A, Sue HJ (2006) Intercalation and exfoliation: a review on morphology of polymer nanohybrids reinforced by inorganic layer structures. Mater Manuf Process 21(2):143–151

    CAS  Article  Google Scholar 

  7. 7.

    Choudalakis G, Gotsis AD (2009) Permeability of polymer/clay nanohybrids: a review. Eur Polym J 45(4):967–984

    CAS  Article  Google Scholar 

  8. 8.

    Thostenson ET, Li C, Chou TW (2005) Nanohybrids in context. Compos Sci Technol 65(3–4):491–516

    CAS  Article  Google Scholar 

  9. 9.

    Nam PH, Maiti P, Okamoto M, Kotaka T, Hasegawa N, Usuki A (2001) A hierarchical structure and properties of intercalated polypropylene/clay nanohybrids. Polymer 42(23):9633–9640

    CAS  Article  Google Scholar 

  10. 10.

    Pandey S, Jana KK, Aswal VK, Rana D, Maiti P (2017) Effect of nanoparticle on the mechanical and gas barrier properties of thermoplastic polyurethane. Appl Clay Sci 146:468–474

    CAS  Article  Google Scholar 

  11. 11.

    Jana KK, Charan C, Shahi VK, Mitra K, Ray B, Rana D, Maiti P (2015) Functionalized poly (vinylidene fluoride) nanohybrid for superior fuel cell membrane. J Membr Sci 481:124–136

    CAS  Article  Google Scholar 

  12. 12.

    Al Jabareen A, Al-Bustami H, Harel H, Marom G (2013) Improving the oxygen barrier properties of polyethylene terephthalate by graphite nanoplatelets. J Appl Polym Sci 128(3):1534–1539

    Google Scholar 

  13. 13.

    Ghasemi H, Carreau PJ, Kamal MR, Tabatabaei SH (2012) Properties of PET/clay nanohybrid films. Polym Eng Sci 52(2):420–430

    CAS  Article  Google Scholar 

  14. 14.

    Saxena D, Rana D, Gowd EB, Maiti P (2019) Improvement in mechanical and structural properties of poly (ethylene terephthalate) nanohybrid. SN Appl Sci 1(11):1363

    Article  Google Scholar 

  15. 15.

    Frounchi M, Dourbash A (2009) Oxygen barrier properties of poly (ethylene terephthalate) nanohybrid films. Macromol Mater Eng 294(1):68–74

    CAS  Article  Google Scholar 

  16. 16.

    Vassiliou AA, Chrissafis K, Bikiaris DN (2010) In situ prepared PET nanohybrids: effect of organically modified montmorillonite and fumed silica nanoparticles on PET physical properties and thermal degradation kinetics. ThermochimicaActa 500(1–2):21–29

    CAS  Article  Google Scholar 

  17. 17.

    Lin Y, Tyler R, Sun H, Shi K, Schiraldi DA (2017) Improving oxygen barrier property of biaxially oriented PET/phosphate glass composite films. Polymer 127:236–240

    CAS  Article  Google Scholar 

  18. 18.

    Lee WD, Im SS, Lim HM, Kim KJ (2006) Preparation and properties of layered double hydroxide/poly (ethylene terephthalate) nanohybrids by direct melt compounding. Polymer 47(4):1364–1371

    CAS  Article  Google Scholar 

  19. 19.

    Saxena D, Soundararajan N, Katiyar V, Rana D, Maiti P (2019) Structural, mechanical, and gas barrier properties of poly (ethylene terephthalate) nanohybrid using nanotalc. J Appl Polym Sci 48607

  20. 20.

    Anand K, Agarwal US, Joseph R (2007) Carbon nanotubes-reinforced PET nanocomposite by melt-compounding. J Appl Polym Sci 104(5):3090–3095

    Article  Google Scholar 

  21. 21.

    Jin SH, Park YB, Yoon KH (2007) Rheological and mechanical properties of surface modified multi-walled carbon nanotube-filled PET composite. Compos Sci Technol 67(15–16):3434–3441

    CAS  Article  Google Scholar 

  22. 22.

    Ghanbari A, Heuzey MC, Carreau PJ, Ton-That MT (2013) A novel approach to control thermal degradation of PET/organoclay nanocomposites and improve clay exfoliation. Polymer 54(4):1361–1369

    CAS  Article  Google Scholar 

  23. 23.

    Tiwari VK, Prasad AK, Singh V, Jana KK, Misra M, Prasad CD, Maiti P (2013) Nanoparticle and process induced super toughened piezoelectric hybrid materials: the effect of stretching on filled system. Macromolecules 46(14):5595–5603

    CAS  Article  Google Scholar 

  24. 24.

    Nand AV, Ray S, Travas-Sejdic J, Kilmartin PA (2012) Characterization of polyethylene terephthalate/polyaniline blends as potential antioxidant materials. Mater Chem Phys 134(1):443–450

    CAS  Article  Google Scholar 

  25. 25.

    Hu K, Kulkarni DD, Choi I, Tsukruk VV (2014) Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci 39(11):1934–1972

    CAS  Article  Google Scholar 

  26. 26.

    Shen Y, Harkin-Jones E, Hornsby P, McNally T, Abu-Zurayk R (2011) The effect of temperature and strain rate on the deformation behaviour, structure development and properties of biaxially stretched PET–clay nanohybrids. Compos Sci Technol 71(5):758–764

    CAS  Article  Google Scholar 

  27. 27.

    Riggleman RA, Toepperwein G, Papakonstantopoulos GJ, Barrat JL, de Pablo JJ (2009) Entanglement network in nanoparticle reinforced polymers. J Chem Phys 130(24):244903

    Article  Google Scholar 

  28. 28.

    Affdl JC, Kardos JL (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16(5):344–352

    Article  Google Scholar 

  29. 29.

    Hui CY, Shia D (1998) Simple formulae for the effective moduli of unidirectional aligned composites. Polym Eng Sci 38(5):774–782

    CAS  Article  Google Scholar 

  30. 30.

    Chen B, Evans JR (2006) Elastic moduli of clay platelets. Scriptamaterialia 54(9):1581–1585

    CAS  Google Scholar 

  31. 31.

    Fan Z, Gong F, Nguyen ST, Duong HM (2015) Advanced multifunctional graphene aerogel–poly (methyl methacrylate) composites: experiments and modeling. Carbon 81:396–404

    CAS  Article  Google Scholar 

  32. 32.

    Goyal RK, Tiwari AN, Negi YS (2008) Microhardness of PEEK/ceramic micro-and nanocomposites: correlation with Halpin–Tsai model. Mater Sci Eng A 491(1–2):230–236

    Article  Google Scholar 

  33. 33.

    Li S, Auddy K, Barber P, Hansen TJ, Ma J, zurLoye HC, Ploehn HJ (2012) Thermal, mechanical, and barrier properties of polyethylene terephthalate platelet nanocomposites prepared by in situ polymerization. Polym Eng Sci 52(9):1888–1902

  34. 34.

    Kawakami D, Hsiao BS, Burger C, Ran S, Avila-Orta C, Sics I et al (2005) Deformation-induced phase transition and superstructure formation in poly (ethylene terephthalate). Macromolecules 38(1):91–103

    CAS  Article  Google Scholar 

  35. 35.

    Kawakami D, Ran S, Burger C, Fu B, Sics I, Chu B, Hsiao BS (2003) Mechanism of structural formation by uniaxial deformation in amorphous poly (ethylene terephthalate) above the glass temperature. Macromolecules 36(25):9275–9280

    CAS  Article  Google Scholar 

  36. 36.

    Ran S, Wang Z, Burger C, Chu B, Hsiao BS (2002) Mesophase as the precursor for strain-induced crystallization in amorphous poly(ethylene terephthalate) film. Macromolecules 35(27):10102–10107

    CAS  Article  Google Scholar 

  37. 37.

    Debye P, Bueche AM (1949) Scattering by an inhomogeneous solid. J Appl Phys 20(6):518–525

    CAS  Article  Google Scholar 

  38. 38.

    Mishra A, Aswal VK, Maiti P (2010) Nanostructure to microstructure self-assembly of aliphatic polyurethanes: the effect on mechanical properties. J Phys Chem B 114(16):5292–5300

    CAS  Article  Google Scholar 

  39. 39.

    Imai M, Mori K, Mizukami T, Kaji K, Kanaya T (1992) Structural formation of poly(ethylene terephthalate) during the induction period of crystallization: 2. Kinetic analysis based on the theories of phase separation. Polymer 33(21):4457–4462

    CAS  Article  Google Scholar 

  40. 40.

    Nielsen LE (1967) Models for the permeability of filled polymer systems. J Macromol Sci Chem 1(5):929–942

    CAS  Article  Google Scholar 

  41. 41.

    Bharadwaj RK (2001) Modeling the barrier properties of polymer-layered silicate nanohybrids. Macromolecules 34(26):9189–9192

    CAS  Article  Google Scholar 

Download references


DS acknowledges the institute for her teaching assistantship.

Author information



Corresponding author

Correspondence to Pralay Maiti.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 104 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saxena, D., Jana, K.K., Soundararajan, N. et al. Potency of nanolay on structural, mechanical and gas barrier properties of poly(ethylene terephthalate) Nanohybrid. J Polym Res 27, 35 (2020). https://doi.org/10.1007/s10965-020-2011-2

Download citation


  • Poly(ethylene terephthalate)
  • Nanohybrid
  • Mechanical properties
  • Gas barrier
  • Stretching effect