Biodegradable polymers: a cure for the planet, but a long way to go


Nowadays, vigorously researching and developing biodegradable materials is an effective way to solve the problem of white pollution. As far as we know, systematic research in environmental compatibility of biodegradable polymers has not been reported. Furthermore, there are few tangible products in the relevant frontier fields that really benefit consumers. The research and development of biodegradable materials still has a long way to go, which is mainly manifested in its low consumption nowadays and the series of degradation effects all may adding burden to the current environment. Combined with the current background, this work reviewed the general classification and the application of typical biodegradable polymers, providing readers an intuitive and systematic understanding of biodegradable polymers. Moreover, we analyzed some shortcomings of the recent research, and briefly proposed some development directions and solutions to the main existed problems, namely, cost control, in-depth development of functions and applications, materials source extension, enhancement of environmental protection awareness and regulations, and systematical assessment of environmental compatibility of the biodegradable polymers.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Sardon H, Dove AP (2018) Plastics recycling with a difference. Science 360(6387):380–381

    CAS  PubMed  Google Scholar 

  2. 2.

    Duan H, Song G, Qu S, Dong X, Xu M (2019) Post-consumer packaging waste from express delivery in China. Resour Conserv Recycl 144:137–143

    Google Scholar 

  3. 3.

    Khatoon N, Jamal A, Ali MI (2019) Lignin peroxidase isoenzyme: a novel approach to biodegrade the toxic synthetic polymer waste. Environ Technol 40(11):1366–1375

    CAS  PubMed  Google Scholar 

  4. 4.

    Mondal MK, Bose BP, Bansal P (2019) Recycling waste thermoplastic for energy efficient construction materials: an experimental investigation. J Environ Manag 240:119–125

    CAS  Google Scholar 

  5. 5.

    Degnan T, Shinde SL (2019) Waste-plastic processing provides global challenges and opportunities. MRS Bull 44(6):436–437

    Google Scholar 

  6. 6.

    Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297(5582):803–807

    CAS  PubMed  Google Scholar 

  7. 7.

    O'Brien J, Thondhlana G (2019) Plastic bag use in South Africa: perceptions, practices and potential intervention strategies. Waste Manag 84:320–328

    PubMed  Google Scholar 

  8. 8.

    Wang MH, He Y, Sen B (2019) Research and management of plastic pollution in coastal environments of China. Environ Pollut 248:898–905

    CAS  PubMed  Google Scholar 

  9. 9.

    Wang W, Themelis NJ, Sun K, Bourtsalas AC, Huang Q, Zhang Y, Wu Z (2019) Current influence of China’s ban on plastic waste imports. Waste Disposal & Sustainable Energy 1(1):67–78

    Google Scholar 

  10. 10.

    Carver SM, Lepistö R, Tuovinen OH (2019) Effect of the type and concentration of cellulose and temperature on metabolite formation by a fermentative thermophilic consortium. Int J Hydrog Energy 44(32):17248–17259

    CAS  Google Scholar 

  11. 11.

    Dai J, Styles GN, Patti AF, Saito K (2018) CuSO4/H2O2-catalyzed lignin Depolymerization under the irradiation of microwaves. ACS Omega 3(9):10433–10441

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Liu Y, Ma H, Huang J, Li Z, Pan Y, Du Y (2019) Carbonaceous nanomaterials stimulate extracellular enzyme release by the fungus Cladosporium sp. and enhance extracellular electron transfer to facilitate lignin biodegradation. Sci Total Environ 696:134072

    CAS  Google Scholar 

  13. 13.

    Fu Y, Li B, Jiang Y-B, Dunphy DR, Tsai A, Tam S-Y, Fan H, Zhang H, Rogers D, Rempe S, Atanassov P, Cecchi JL, Brinker CJ (2014) Atomic layer deposition of l-alanine polypeptide. J Am Chem Soc 136(45):15821–15824

    CAS  PubMed  Google Scholar 

  14. 14.

    Boyandin AN, Zhila NO, Kiselev EG, Volova TG (2016) Constructing slow-release formulations of Metribuzin based on degradable poly(3-hydroxybutyrate). J Agr Food Chem 64(28):5625–5632

    CAS  Google Scholar 

  15. 15.

    Li Z, Yang J, Loh XJ (2016) Polyhydroxyalkanoates: opening doors for a sustainable future. NPG Asia Materials 8(4):e265–e265

    CAS  Google Scholar 

  16. 16.

    Sun T, Li G, Ning T-Y, Zhang Z-M, Mi Q-H, Lal R (2018) Suitability of mulching with biodegradable film to moderate soil temperature and moisture and to increase photosynthesis and yield in peanut. Agr Water Manage 208:214–223

    Google Scholar 

  17. 17.

    Sriyapai P, Chansiri K, Sriyapai T (2018) Isolation and characterization of polyester-based plastics-degrading Bacteria from compost soils. Microbiology 87(2):290–300

    CAS  Google Scholar 

  18. 18.

    Sashiwa H, Fukuda R, Okura T, Sato S, Nakayama A (2018) Microbial degradation behavior in seawater of polyester blends containing poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx). Mar drugs 16(1):34

    PubMed Central  Google Scholar 

  19. 19.

    Yin G, Zhang L, Zhou Z, Li Q (2016) Preparation and characterization of cross-linked PCL porous membranes. J Polym Res 23(11):229

    Google Scholar 

  20. 20.

    Li X, Su X (2018) Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy. J Mater Chem B 6(29):4714–4730

    CAS  PubMed  Google Scholar 

  21. 21.

    R.P. Bangalore Ashok, P. Oinas, K. Lintinen, G. Sarwar, M.A. Kostiainen, M. Österberg, Techno-economic assessment for the large-scale production of colloidal lignin particles, green Chem. (2018)

    Google Scholar 

  22. 22.

    Ghaffar SH, Fan M (2014) Lignin in straw and its applications as an adhesive. Int J Adhes Adhes 48:92–101

    CAS  Google Scholar 

  23. 23.

    Sun J-Y, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489:133

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Yu Y, Shang L, Guo J, Wang J, Zhao Y (2018) Design of capillary microfluidics for spinning cell-laden microfibers. Nat Protoc 13(11):2557–2579

    CAS  PubMed  Google Scholar 

  25. 25.

    Peng Y-H, Shih Y-h, Lai Y-C, Liu Y-Z, Liu Y-T, Lin N-C (2014) Degradation of polyurethane by bacterium isolated from soil and assessment of polyurethanolytic activity of a Pseudomonas putida strain. Environ Sci Pollut Res 21(16):9529–9537

    CAS  Google Scholar 

  26. 26.

    Howard GT (2002) Biodegradation of polyurethane: a review. Int Biodeterior Biodegradation 49(4):245–252

    CAS  Google Scholar 

  27. 27.

    Hayashi T, Kanai H, Yodoya S, Oka M, Hayashi T (2002) Biodegradation of random co-polypeptide hydrogels consisting of N-hydroxypropyl l-glutamine as one component. Eur Polym J 38(1):139–146

    CAS  Google Scholar 

  28. 28.

    Tosta MR, Prates LL, Christensen DA, Yu P (2019) Biodegradation kinetics by microorganisms, enzymatic biodigestion, and fractionation of protein in seeds of cool-climate-adapted oats: comparison among oat varieties, between milling-type and feed-type oats, and with barley grain. J Cereal Sci 89:102814

    CAS  Google Scholar 

  29. 29.

    Furtwengler P, Avérous L (2018) Renewable polyols for advanced polyurethane foams from diverse biomass resources. Polym Chem 9(32):4258–4287

    CAS  Google Scholar 

  30. 30.

    Parandeh S, Kharaziha M, Karimzadeh F (2019) An eco-friendly triboelectric hybrid nanogenerators based on graphene oxide incorporated polycaprolactone fibers and cellulose paper. Nano Energy 59:412–421

    CAS  Google Scholar 

  31. 31.

    Pan R, Xuan W, Chen J, Dong S, Jin H, Wang X, Li H, Luo J (2018) Fully biodegradable triboelectric nanogenerators based on electrospun polylactic acid and nanostructured gelatin films. Nano Energy 45:193–202

    CAS  Google Scholar 

  32. 32.

    Khalid S, Yu L, Feng M, Meng L, Bai Y, Ali A, Liu H, Chen L (2018) Development and characterization of biodegradable antimicrobial packaging films based on polycaprolactone, starch and pomegranate rind hybrids. Food Packaging Shelf 18:71–79

    Google Scholar 

  33. 33.

    Shi J, Zhang L, Xiao P, Huang Y, Chen P, Wang X, Gu J, Zhang J, Chen T (2018) Biodegradable PLA nonwoven fabric with controllable wettability for efficient water purification and Photocatalysis degradation. ACS Sustain Chem Eng 6(2):2445–2452

    CAS  Google Scholar 

  34. 34.

    Ghimire S, Flury M, Scheenstra EJ, Miles CA (2019) Sampling and degradation of biodegradable plastic and paper mulches in field after tillage incorporation. Sci Total Environ 135577

  35. 35.

    Arun Kumar R, Sivashanmugam A, Deepthi S, Iseki S, Chennazhi KP, Nair SV, Jayakumar R (2015) Injectable chitin-poly(ε-caprolactone)/Nanohydroxyapatite composite microgels prepared by simple regeneration technique for bone tissue engineering. ACS Appl Mater Interfaces 7(18):9399–9409

    CAS  PubMed  Google Scholar 

  36. 36.

    Zheng R, Duan H, Xue J, Liu Y, Feng B, Zhao S, Zhu Y, Liu Y, He A, Zhang W, Liu W, Cao Y, Zhou G (2014) The influence of gelatin/PCL ratio and 3-D construct shape of electrospun membranes on cartilage regeneration. Biomaterials 35(1):152–164

    PubMed  Google Scholar 

  37. 37.

    Zhang H, Chen F, Liu X, Fu S (2018) Micromorphology influence on the color performance of lignin and its application in guiding the preparation of light-colored lignin sunscreen. ACS Sustain Chem Eng 6(9):12532–12540

    CAS  Google Scholar 

  38. 38.

    Ju C, Li M, Fang Y, Tan T (2018) Efficient hydro-deoxygenation of lignin derived phenolic compounds over bifunctional catalysts with optimized acid/metal interactions. Green Chem 20(19):4492–4499

    CAS  Google Scholar 

  39. 39.

    Qin Y, Zhuang Y, Wu Y, Li L (2016) Quality evaluation of hot peppers stored in biodegradable poly(lactic acid)-based active packaging. Scientia Hort 202:1–8

    CAS  Google Scholar 

  40. 40.

    Ma W, Zhang M, Liu Z, Huang C, Fu G (2018) Nature-inspired creation of a robust free-standing electrospun nanofibrous membrane for efficient oil–water separation, Environ. Sci.-Nano

  41. 41.

    Zhang W, Liu M, Liu Y, Liu R, Wei F, Xiao R, Liu H (2015) 3D porous poly(l-lactic acid) foams composed of nanofibers, nanofibrous microsheaves and microspheres and their application in oil–water separation. J Mater Chem A 3(26):14054–14062

    CAS  Google Scholar 

  42. 42.

    Pérez-García MG, Gutiérrez MC, Mota-Morales JD, Luna-Bárcenas G, del Monte F (2016) Synthesis of biodegradable macroporous poly(l-lactide)/poly(ε-caprolactone) blend using oil-in-eutectic-mixture high-internal-phase emulsions as template. ACS Appl. Mater. Inter. 8(26):16939–16949

    Google Scholar 

  43. 43.

    Zhang M, Jia H, Weng Y, Li C (2019) Biodegradable PLA/PBAT mulch on microbial community structure in different soils. Int Biodeterior Biodegradation 145:104817

    Google Scholar 

  44. 44.

    Mi H-Y, Jing X, Napiwocki BN, Hagerty BS, Chen G, Turng L-S (2017) Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering. J Mater Chem B 5(22):4137–4151

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Fonseca DR, Sobreiro-Almeida R, Sol PC, Neves NM (2018) Development of non-orthogonal 3D-printed scaffolds to enhance their osteogenic performance. Biomater Sci 6(6):1569–1579

    CAS  PubMed  Google Scholar 

  46. 46.

    Wang K, Zhang Q, Zhao L, Pan Y, Wang T, Zhi D, Ma S, Zhang P, Zhao T, Zhang S, Li W, Zhu M, Zhu Y, Zhang J, Qiao M, Kong D (2017) Functional modification of electrospun poly(ε-caprolactone) vascular grafts with the fusion protein VEGF–HGFI enhanced vascular regeneration. ACS Appl Mater Inter 9(13):11415–11427

    CAS  Google Scholar 

  47. 47.

    Tsao C-K, Ko C-Y, Yang S-R, Yang C-Y, Brey EM, Huang S, Chu IM, Cheng M-H (2014) An ectopic approach for engineering a vascularized tracheal substitute. Biomaterials 35(4):1163–1175

    CAS  PubMed  Google Scholar 

  48. 48.

    Shi R, Xue J, Wang H, Wang R, Gong M, Chen D, Zhang L, Tian W (2015) Fabrication and evaluation of a homogeneous electrospun PCL-gelatin hybrid membrane as an anti-adhesion barrier for craniectomy. J Mater Chem B 3(19):4063–4073

    CAS  PubMed  Google Scholar 

  49. 49.

    Zhao J, Xu R, Luo G, Wu J, Xia H (2016) Self-healing poly(siloxane-urethane) elastomers with remoldability, shape memory and biocompatibility. Polym Chem 7(47):7278–7286

    CAS  Google Scholar 

  50. 50.

    Zhou C, Shi Q, Guo W, Terrell L, Qureshi AT, Hayes DJ, Wu Q (2013) Electrospun bio-Nanocomposite scaffolds for bone tissue engineering by cellulose Nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl. Mater. Inter. 5(9):3847–3854

    CAS  Google Scholar 

  51. 51.

    Yin G, Zhang L, Li Q (2016) A convenient method to fabricate porous cross-linked PCL membrane by using dual pore-forming agents. Mater Lett 181:208–211

    CAS  Google Scholar 

  52. 52.

    Yin G, Zhao D, Zhang L, Ren Y, Ji S, Tang H, Zhou Z, Li Q (2016) Highly porous 3D PLLA materials composed of nanosheets, fibrous nanosheets, or nanofibrous networks: preparation and the potential application in oil–water separation. Chem Eng J 302:1–11

    CAS  Google Scholar 

  53. 53.

    Mu X, Bertron T, Dunn C, Qiao H, Wu J, Zhao Z, Saldana C, Qi HJ (2017) Porous polymeric materials by 3D printing of photocurable resin. Mater Horiz 4(3):442–449

    CAS  Google Scholar 

  54. 54.

    Guo F, Wang N, Wang L, Hou L, Ma L, Liu J, Chen Y, Fan B, Zhao Y (2015) An electrospun strong PCL/PU composite vascular graft with mechanical anisotropy and cyclic stability. J Mater Chem A 3(9):4782–4787

    CAS  Google Scholar 

  55. 55.

    Huang C, Wang S, Qiu L, Ke Q, Zhai W, Mo X (2013) Heparin loading and pre-endothelialization in enhancing the patency rate of electrospun small-diameter vascular grafts in a canine model. ACS Appl. Mater. Inter. 5(6):2220–2226

    CAS  Google Scholar 

  56. 56.

    Lim MPA, Lee WL, Widjaja E, Loo SCJ (2013) One-step fabrication of core–shell structured alginate–PLGA/PLLA microparticles as a novel drug delivery system for water soluble drugs. Biomater. Sci. 1(5):486–493

    CAS  PubMed  Google Scholar 

  57. 57.

    Liu H, Miao K, Zhao G, Li C, Zhao Y (2014) Synthesis of an amphiphilic PEG-PCL-PSt-PLLA-PAA star quintopolymer and its self-assembly for pH-sensitive drug delivery. Polym Chem 5(8):3071–3080

    CAS  Google Scholar 

  58. 58.

    Sene S, McLane J, Schaub N, Bégu S, Hubert Mutin P, Ligon L, Gilbert RJ, Laurencin D (2016) Formulation of benzoxaborole drugs in PLLA: from materials preparation to in vitro release kinetics and cellular assays. J Mater Chem B 4(2):257–272

    CAS  PubMed  Google Scholar 

  59. 59.

    Xu J, Wang S, Wang G-JN, Zhu C, Luo S, Jin L, Gu X, Chen S, Feig VR, J.W.F. To, Rondeau-Gagné S, Park J, Schroeder BC, Lu C, Oh JY, Wang Y, Kim Y-H, Yan H, Sinclair R, Zhou D, Xue G, Murmann B, Linder C, Cai W, Tok JB-H, Chung JW, Bao Z (2017) Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355(6320):59–64

    CAS  PubMed  Google Scholar 

  60. 60.

    Wang J, Li S, Yi F, Zi Y, Lin J, Wang X, Xu Y, Wang ZL (2016) Sustainably powering wearable electronics solely by biomechanical energy. Nat Commun 7:12744

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Honda W, Harada S, Arie T, Akita S, Takei K (2014) Flexible electronics: Wearable, human-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques (Adv. Funct. Mater. 22/2014). Adv. Funct. Mater 24(22):3298–3298

    Google Scholar 

  62. 62.

    Messer H, Zinevich A, Alpert P (2006) Environmental monitoring by wireless communication networks. Science 312(5774):713–713

    CAS  PubMed  Google Scholar 

  63. 63.

    Grau G, Kitsomboonloha R, Swisher SL, Kang H, Subramanian V (2014) Printed transistors on paper: towards smart consumer product packaging. Adv Funct Mater 24(32):5067–5074

    CAS  Google Scholar 

  64. 64.

    Gao X, Huang L, Wang B, Xu D, Zhong J, Hu Z, Zhang L, Zhou J (2016) Natural materials assembled, biodegradable, and transparent paper-based electret Nanogenerator. ACS Appl. Mater. Inter. 8(51):35587–35592

    CAS  Google Scholar 

  65. 65.

    Chen J, Xie F, Li X, Chen L (2018) Ionic liquids for the preparation of biopolymer materials for drug/gene delivery: a review. Green Chem 20(18):4169–4200

    CAS  Google Scholar 

  66. 66.

    Nascimento DM, Nunes YL, Figueirêdo MCB, de Azeredo HMC, Aouada FA, Feitosa JPA, Rosa MF, Dufresne A (2018) Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chem 20(11):2428–2448

    CAS  Google Scholar 

  67. 67.

    Favier V, Chanzy H, Cavaille JY (1995) Polymer Nanocomposites reinforced by cellulose whiskers. Macromolecules 28(18):6365–6367

    CAS  Google Scholar 

  68. 68.

    Michud A, Hummel M, Sixta H (2015) Influence of molar mass distribution on the final properties of fibers regenerated from cellulose dissolved in ionic liquid by dry-jet wet spinning. Polymer 75:1–9

    CAS  Google Scholar 

  69. 69.

    Wang G, He Y, Wang H, Zhang L, Yu Q, Peng S, Wu X, Ren T, Zeng Z, Xue Q (2015) A cellulose sponge with robust superhydrophilicity and under-water superoleophobicity for highly effective oil/water separation. Green Chem 17(5):3093–3099

    CAS  Google Scholar 

  70. 70.

    Jiang F, Hsieh Y-L (2014) Amphiphilic superabsorbent cellulose nanofibril aerogels. J Mater Chem A 2(18):6337–6342

    CAS  Google Scholar 

  71. 71.

    Li L, Tao H, Wu B, Zhu G, Li K, Lin N (2018) Triazole end-grafting on cellulose Nanocrystals for water-Redispersion improvement and reactive enhancement to Nanocomposites. ACS Sustain Chem Eng 6(11):14888–14900

    CAS  Google Scholar 

  72. 72.

    Yang Y, Roy A, Zhao Y, Undzys E, Li S-D (2017) Comparison of tumor penetration of Podophyllotoxin–Carboxymethylcellulose conjugates with various chemical compositions in tumor spheroid culture and in vivo solid tumor. Bioconjug Chem 28(5):1505–1518

    CAS  PubMed  Google Scholar 

  73. 73.

    Liu Q, Dong Z, Ding Z, Hu Z, Yu D, Hu Y, Abidi N, Li W (2018) Electroresponsive homogeneous polyelectrolyte complex hydrogels from naturally derived polysaccharides. ACS Sustain Chem Eng 6(5):7052–7063

    CAS  Google Scholar 

  74. 74.

    Liu K-F, Liu Y-X, Li C-X, Wang L-Y, Liu J, Lei J-D (2018) Self-assembled pH and redox dual responsive Carboxymethylcellulose-based polymeric nanoparticles for efficient anticancer drug Codelivery. ACS Biomaterials Science & Engineering 4(12):4200–4207

    CAS  Google Scholar 

  75. 75.

    Ahmad MA, Milhem RM, Panicker NG, Rizvi TA, Mustafa F (2016) Electrical characterization of DNA supported on nitrocellulose membranes. Sci Rep 6:29089

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Kim J-K, Kim DH, Joo SH, Choi B, Cha A, Kim KM, Kwon T-H, Kwak SK, Kang SJ, Jin J (2017) Hierarchical chitin fibers with aligned Nanofibrillar architectures: a nonwoven-mat separator for Lithium metal batteries. ACS Nano 11(6):6114–6121

    CAS  PubMed  Google Scholar 

  77. 77.

    Li K, Berton P, Kelley SP, Rogers RD (2018) Singlet oxygen production and tunable optical properties of Deacetylated chitin-Porphyrin Crosslinked films. Biomacromolecules 19(8):3291–3300

    PubMed  Google Scholar 

  78. 78.

    Huang W-C, Wang W, Xue C, Mao X (2018) Effective enzyme immobilization onto a magnetic chitin Nanofiber composite. ACS Sustain Chem Eng 6(7):8118–8124

    CAS  Google Scholar 

  79. 79.

    Sundaram MN, Krishnamoorthi Kaliannagounder V, Selvaprithiviraj V, Suresh MK, Biswas R, Vasudevan AK, Varma PK, Jayakumar R (2018) Bioadhesive, hemostatic, and antibacterial in situ chitin–fibrin Nanocomposite gel for controlling bleeding and preventing infections at mediastinum. ACS Sustain Chem Eng 6(6):7826–7840

    CAS  Google Scholar 

  80. 80.

    Duan Y, Freyburger A, Kunz W, Zollfrank C (2018) Lignin/chitin films and their adsorption characteristics for heavy metal ions. ACS Sustain Chem Eng 6(5):6965–6973

    CAS  Google Scholar 

  81. 81.

    Wu J-X, Zhang J, Kang Y-L, Wu G, Chen S-C, Wang Y-Z (2018) Reusable and recyclable Superhydrophilic electrospun Nanofibrous membranes with in situ co-cross-linked polymer–chitin Nanowhisker network for robust oil-in-water emulsion separation. ACS Sustain Chem Eng 6(2):1753–1762

    CAS  Google Scholar 

  82. 82.

    Margoutidis G, Parsons VH, Bottaro CS, Yan N, Kerton FM (2018) Mechanochemical Amorphization of α-chitin and conversion into oligomers of N-acetyl-d-glucosamine. ACS Sustain Chem Eng 6(2):1662–1669

    CAS  Google Scholar 

  83. 83.

    Deng L, Taxipalati M, Zhang A, Que F, Wei H, Feng F, Zhang H (2018) Electrospun chitosan/poly(ethylene oxide)/Lauric Arginate Nanofibrous film with enhanced antimicrobial activity. J Agric Food Chem 66(24):6219–6226

    CAS  PubMed  Google Scholar 

  84. 84.

    Bozuyuk U, Yasa O, Yasa IC, Ceylan H, Kizilel S, Sitti M (2018) Light-triggered drug release from 3D-printed magnetic chitosan microswimmers. ACS Nano 12(9):9617–9625

    CAS  PubMed  Google Scholar 

  85. 85.

    Vecchies F, Sacco P, Decleva E, Menegazzi R, Porrelli D, Donati I, Turco G, Paoletti S, Marsich E (2018) Complex Coacervates between a lactose-modified chitosan and hyaluronic acid as radical-scavenging drug carriers. Biomacromolecules 19(10):3936–3944

    CAS  PubMed  Google Scholar 

  86. 86.

    Liu H, Wen W, Chen S, Zhou C, Luo B (2018) Preparation of Icariin and Deferoxamine functionalized poly(l-lactide)/chitosan micro/Nanofibrous membranes with synergistic enhanced Osteogenesis and angiogenesis. ACS Applied Bio Materials 1(2):389–402

    CAS  Google Scholar 

  87. 87.

    Sadhasivam B, Ravishankar K, Desingh R, Subramaniyam R, Dhamodharan R (2018) Biocompatible porous scaffolds of chitosan/poly(EG-ran-PG) blends with tailored pore size and nontoxic to Mesenchymal stem cells: preparation by controlled evaporation from aqueous acetic acid solution. ACS Omega 3(8):10286–10295

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Liu X, Gu X, Sun J, Zhang S (2017) Preparation and characterization of chitosan derivatives and their application as flame retardants in thermoplastic polyurethane. Carbohydr Polym 167:356–363

    CAS  PubMed  Google Scholar 

  89. 89.

    Sun J-Y, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489(7414):133–136

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Lin N, Bruzzese C, Dufresne A (2012) TEMPO-oxidized Nanocellulose participating as crosslinking aid for alginate-based sponges. ACS Appl Mater Interfaces 4(9):4948–4959

    CAS  PubMed  Google Scholar 

  91. 91.

    Li W, Ma Y-j, Tang X-f, Jiang N, Zhang R, Han N, Zhang X-x (2014) Composition and characterization of Thermoregulated Fiber containing acrylic-based copolymer microencapsulated phase-change materials (MicroPCMs). Ind Eng Chem Res 53(13):5413–5420

    CAS  Google Scholar 

  92. 92.

    Cao Y, Wang N, He X, Li H-R, He L-N (2018) Photocatalytic oxidation and subsequent Hydrogenolysis of lignin β-O-4 models to aromatics promoted by in situ carbonic acid. ACS Sustain. Chem. Eng

  93. 93.

    Kun D, Pukánszky B (2017) Polymer/lignin blends: interactions, properties, applications. Eur Polym J 93:618–641

    CAS  Google Scholar 

  94. 94.

    Jin J, Ding J, Klett AS, Thies MC, Ogale AA (2018) Carbon fibers derived from fractionated–solvated lignin precursors for enhanced mechanical performance. ACS Sustain Chem Eng 6(11):14135–14142

    CAS  Google Scholar 

  95. 95.

    Qiu X, Li Y, Qian Y, Wang J, Zhu S (2018) Long-acting and safe sunscreens with ultrahigh Sun protection factor via natural lignin encapsulation and synergy. ACS Appl. Bio Mater

  96. 96.

    Dusselier M, Van Wouwe P, Dewaele A, Jacobs PA, Sels BF (2015) Shape-selective zeolite catalysis for bioplastics production. Science 349(6243):78–80

    CAS  PubMed  Google Scholar 

  97. 97.

    Correa AC, Carmona VB, Simão JA, Capparelli Mattoso LH, Marconcini JM (2017) Biodegradable blends of urea plasticized thermoplastic starch (UTPS) and poly(ε-caprolactone) (PCL): morphological, rheological, thermal and mechanical properties. Carbohyd Polym 167:177–184

    CAS  Google Scholar 

  98. 98.

    Brière R, Loubet P, Glogic E, Estrine B, Marinkovic S, Jérôme F, Sonnemann G (2018) Life cycle assessment of the production of surface-active alkyl polyglycosides from acid-assisted ball-milled wheat straw compared to the conventional production based on corn-starch. Green Chem 20(9):2135–2141

    Google Scholar 

  99. 99.

    Westhues S, Idel J, Klankermayer J (2018) Molecular catalyst systems as key enablers for tailored polyesters and polycarbonate recycling concepts. Sci. Adv 4(8)

  100. 100.

    Mohammad Sahebjalal NC (2015) Twelve months dual antiplatelet therapy after drug-eluting stents-too long, too short or just right? Interv Cardiol 10(3):136–138

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    Davenport Huyer L, Zhang B, Korolj A, Montgomery M, Drecun S, Conant G, Zhao Y, Reis L, Radisic M (2016) Highly elastic and moldable polyester biomaterial for cardiac tissue engineering applications. ACS Biomater Sci Eng 2(5):780–788

    CAS  Google Scholar 

  102. 102.

    Montgomery M, Davenport Huyer L, Bannerman D, Mohammadi MH, Conant G, Radisic M (2018) Method for the fabrication of elastomeric polyester scaffolds for tissue engineering and minimally invasive delivery. ACS Biomater. Sci. Eng

  103. 103.

    Gao S, Tang G, Hua D, Xiong R, Han J, Jiang S, Zhang Q, Huang C (2019) Stimuli-responsive bio-based polymeric systems and their applications. J Mater Chem B 7(5):709–729

    CAS  PubMed  Google Scholar 

  104. 104.

    Wang Z, Yuan L, Tang C (2017) Sustainable elastomers from renewable biomass. Accounts Chem Res 50(7):1762–1773

    CAS  Google Scholar 

  105. 105.

    Lu C, Liu Y, Liu X, Wang C, Wang J, Chu F (2018) Sustainable multiple- and multistimulus-shape-memory and self-healing elastomers with semi-interpenetrating network derived from biomass via bulk radical polymerization. ACS Sustain Chem Eng 6(5):6527–6535

    CAS  Google Scholar 

  106. 106.

    Feng J, Jiang J, Hse C-y, Yang Z, Wang K, Ye J, Xu J (2018) Selective catalytic conversion of waste lignocellulosic biomass for renewable value-added chemicals via directional microwave-assisted liquefaction. Sustainable Energy & Fuels 2(5):1035–1047

    CAS  Google Scholar 

  107. 107.

    Yin G-Z, Yang X, Zhou Z, Li Q (2018) A green pathway to adjust the mechanical properties and degradation rate of PCL by blending bio-sourced poly (glycerol-succinate) Oligoesters. Mater Chem Front 2:544–553

    CAS  Google Scholar 

  108. 108.

    Krall EM, Klein TW, Andersen RJ, Nett AJ, Glasgow RW, Reader DS, Dauphinais BC, Mc Ilrath SP, Fischer AA, Carney MJ, Hudson DJ, Robertson NJ (2014) Controlled hydrogenative depolymerization of polyesters and polycarbonates catalyzed by ruthenium(ii) PNN pincer complexes. Chem Commun 50(38):4884–4887

    CAS  Google Scholar 

  109. 109.

    Zhu J-B, Watson EM, Tang J, Chen EY-X (2018) A synthetic polymer system with repeatable chemical recyclability. Science 360(6387):398–403

    CAS  PubMed  Google Scholar 

  110. 110.

    Christensen PR, Scheuermann AM, Loeffler KE, Helms BA (2019) Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds. Nat Chem 11(5):442–448

    CAS  PubMed  Google Scholar 

  111. 111.

    Tsang MP, Kikuchi-Uehara E, Sonnemann GW, Aymonier C, Hirao M (2017) Evaluating nanotechnology opportunities and risks through integration of life-cycle and risk assessment. Nat Nanotechnol 12:734

    CAS  PubMed  Google Scholar 

  112. 112.

    Guinée JB, Heijungs R, Vijver MG, Peijnenburg WJGM (2017) Setting the stage for debating the roles of risk assessment and life-cycle assessment of engineered nanomaterials. Nat Nanotechnol 12:727

    PubMed  Google Scholar 

  113. 113.

    European Commission (2010) International reference life cycle data system (ILCD) handbook - general guide on LCA - general guide for life cycle assessment.

  114. 114.

    Spatari S, Betz M, Florin H, Baitz M, Faltenbacher M (2001) Using GaBi 3 to perform life cycle assessment and life cycle engineering. Int J Life Cycle Assess 6(2):81

    Google Scholar 

  115. 115.

    Kubowicz S, Booth AM (2017) Biodegradability of plastics: challenges and misconceptions. Environ Sci Technol 51(21):12058–12060

    CAS  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Guang-Zhong Yin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yin, G., Yang, X. Biodegradable polymers: a cure for the planet, but a long way to go. J Polym Res 27, 38 (2020).

Download citation


  • Biodegradable polymers
  • Aliphatic polyesters
  • Natural macromolecules
  • Environmental protection
  • White pollution