Thermal-responsive magnetic hydrogels based on Tragacanth gum for delivery of anticancer drugs

Abstract

Thermal-responsive magnetic hydrogels (Hydrogel 1 and Hydrogel 2) were synthesized through the copolymerization of maleic anhydride-functionalized Tragacanth gum macromonomer (MATGM), N-isopropylacrylamide (NIPAAm) monomer, and 3-(trimethoxysilyl) propylmethacrylate-modifed magnetic nanoparticles (MPS-MNPs) in the presence of N,-methylene-bis(acrylamide) (MBAm) and N,N,,-tetramethylethylenediamine (TEMED) as crosslinker and accelerator, respectively, using a free radical polymerization approach. The scanning electron microscopy (SEM) images were revealed that the fabricated hydrogels had porous microstructure without microphase separation. The synthesized magnetic hydrogels were loaded with methotrexate (MTX) as an anticancer drug, and their drug loading and encapsulation efficiencies as well as thermal-triggered drug release behaviors were investigated. The biocompatibilities of the fabricated hydrogels were confirmed using MMT assay. The MTX loaded hydrogels were exhibited better anticancer performance than those of the free MTX. Since the biological as well as physicochemical results, the fabricated magnetic hydrogels have high potential for cancer chemotherapy.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444. https://doi.org/10.1038/nature07205

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Garcia-Cordero JL, Maerkl SJ (2020) Microfluidic systems for cancer diagnostics. Curr Opin Biotechnol 65:37–44. https://doi.org/10.1016/j.copbio.2019.11.022

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8(1):59–73. https://doi.org/10.1038/nri2216

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Wu BY, Liu CT, Su YL, Chen SY, Chen YH, Tsai MY (2019) A review of complementary therapies with medicinal plants for chemotherapy-induced peripheral neuropathy. Complementary Ther Med 42:226–232. https://doi.org/10.1016/j.ctim.2018.11.022

    Article  Google Scholar 

  5. 5.

    Haqani M, Roghani-Mamaqani H, Salami-Kalajahi M (2017) Synthesis of dual-sensitive nanocrystalline cellulose-grafted block copolymers of N-isopropylacrylamide and acrylic acid by reversible addition-fragmentation chain transfer polymerization. Cellulose 24(5):2241–2254. https://doi.org/10.1007/s10570-017-1249-2

    CAS  Article  Google Scholar 

  6. 6.

    Eskandari P, Abousalman-Rezvani Z, Hajebi S, Roghani-Mamaqani H, Salami-Kalajahi M (2020) Controlled release of anti-cancer drug from the shell and hollow cavities of poly(N-isopropylacrylamide) hydrogel particles synthesized via reversible addition-fragmentation chain transfer polymerization. European Polymer Journal. 135. https://doi.org/10.1016/j.eurpolymj.2020.109877.

  7. 7.

    Nie J, Pei B, Wang Z, Hu Q (2019) Construction of ordered structure in polysaccharide hydrogel: A review. Carbohyd Polym 205:225–235. https://doi.org/10.1016/j.carbpol.2018.10.033

    CAS  Article  Google Scholar 

  8. 8.

    Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels A review. Chem Eng J 243:572–590. https://doi.org/10.1016/j.cej.2014.01.065

    CAS  Article  Google Scholar 

  9. 9.

    Taylor DL, in het Panhuis M (2016) Self-Healing Hydrogels. Adv Mater 28(41):9060–9093. https://doi.org/10.1002/adma.201601613

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Massoumi B, Mozaffari Z, Jaymand M (2018) A starch-based stimuli-responsive magnetite nanohydrogel as de novo drug delivery system. Int J Biol Macromol 117:418–426. https://doi.org/10.1016/j.ijbiomac.2018.05.211

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Zhao F, Ma ML, Xu B (2009) Molecular hydrogels of therapeutic agents. Chem Soc Rev 38(4):883–891. https://doi.org/10.1039/b806410p

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Abbasian M, Massoumi B, Mohammad-Rezaei R, Samadian H, Jaymand M (2019) Scaffolding polymeric biomaterials: Are naturally occurring biological macromolecules more appropriate for tissue engineering? Int J Biol Macromol 134:673–694. https://doi.org/10.1016/j.ijbiomac.2019.04.197

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Jaymand M (2020) Chemically Modified Natural Polymer-Based Theranostic Nanomedicines: Are They the Golden Gate toward a de Novo Clinical Approach against Cancer? ACS Biomater Sci Eng 6(1):134–166. https://doi.org/10.1021/acsbiomaterials.9b00802

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Cooper RC, Yang H (2019) Hydrogel-based ocular drug delivery systems: Emerging fabrication strategies, applications, and bench-to-bedside manufacturing considerations. J Control Release 306:29–39. https://doi.org/10.1016/j.jconrel.2019.05.034

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Lin D, Lei L, Shi S, Li X. Stimulus-Responsive Hydrogel for Ophthalmic Drug Delivery. Macromolecular Bioscience. 2019;19(6). https://doi.org/10.1002/mabi.201900001.

  16. 16.

    Soppimath KS, Kulkarni AR, Aminabhavi TM (2001) Chemically modified polyacrylamide-g-guar gum-based crosslinked anionic microgels as pH-sensitive drug delivery systems: Preparation and characterization. J Control Release 75(3):331–345. https://doi.org/10.1016/S0168-3659(01)00404-7

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Shin H, Olsen BD, Khademhosseini A (2012) The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials 33(11):3143–3152. https://doi.org/10.1016/j.biomaterials.2011.12.050

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Saruchi, Kaith BS, Jindal R, Kumar V, Bhatti MS (2014) Optimal response surface design of Gum tragacanth-based poly[(acrylic acid)-co-acrylamide] IPN hydrogel for the controlled release of the antihypertensive drug losartan potassium. RSC Advances. 4(75):39822–9. https://doi.org/10.1039/c4ra02803a.

  19. 19.

    Apoorva A, Rameshbabu AP, Dasgupta S, Dhara S, Padmavati M (2020) Novel pH-sensitive alginate hydrogel delivery system reinforced with gum tragacanth for intestinal targeting of nutraceuticals. Int J Biol Macromol 147:675–687. https://doi.org/10.1016/j.ijbiomac.2020.01.027

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Shafiee S, Ahangar HA, Saffar A. Taguchi method optimization for synthesis of Fe3O4 @chitosan/Tragacanth Gum nanocomposite as a drug delivery system. Carbohydrate Polymers. 2019;222. https://doi.org/10.1016/j.carbpol.2019.114982.

  21. 21.

    Veeramachineni AK, Sathasivam T, Paramasivam R, Muniyandy S, Pushpamalar J (2019) Synthesis and Characterization of a Novel pH-Sensitive Aluminum Crosslinked Carboxymethyl Tragacanth Beads for Extended and Enteric Drug Delivery. J Polym Environ 27(7):1516–1528. https://doi.org/10.1007/s10924-019-01448-5

    CAS  Article  Google Scholar 

  22. 22.

    Balaghi S, Mohammadifar MA, Zargaraan A (2010) Physicochemical and rheological characterization of gum tragacanth exudates from six species of iranian astragalus. Food Biophys 5(1):59–71. https://doi.org/10.1007/s11483-009-9144-5

    Article  Google Scholar 

  23. 23.

    Singh B, Sharma V (2014) Influence of polymer network parameters of tragacanth gum-based pH responsive hydrogels on drug delivery. Carbohyd Polym 101(1):928–940. https://doi.org/10.1016/j.carbpol.2013.10.022

    CAS  Article  Google Scholar 

  24. 24.

    Dokhaee Z, Maghsoudi A, Ghiaci P, Ghiaci M (2019) Investigation of the blends of chitosan and tragacanth as potential drug carriers for the delivery of ibuprofen in the intestine. New J Chem 43(37):14917–14927. https://doi.org/10.1039/c9nj03617b

    CAS  Article  Google Scholar 

  25. 25.

    Revia RA, Zhang M (2016) Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: Recent advances. Mater Today 19(3):157–168. https://doi.org/10.1016/j.mattod.2015.08.022

    CAS  Article  Google Scholar 

  26. 26.

    Jadhav SA, Bongiovanni R (2012) Synthesis and organic functionalization approaches for magnetite (Fe3O4) nanoparticles. Advanced Mater Lett 3(5):356–361. https://doi.org/10.5185/amlett.2012.7381

    CAS  Article  Google Scholar 

  27. 27.

    Mirabello G, Lenders JJM, Sommerdijk NAJM (2016) Bioinspired synthesis of magnetite nanoparticles. Chem Soc Rev 45(18):5085–5106. https://doi.org/10.1039/c6cs00432f

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Jaymand M, Lotfi M, Abbasian M. Fabrication of novel dental nanocomposites and investigation their physicochemical and biological properties. Materials Research Express. 2018;5(3). https://doi.org/10.1088/2053-1591/aab51a.

  29. 29.

    Samadian H, Mohammad-Rezaei R, Jahanban-Esfahlan R, Massoumi B, Abbasian M, Jafarizad A et al (2020) A de novo theranostic nanomedicine composed of PEGylated graphene oxide and gold nanoparticles for cancer therapy. J Mater Res. https://doi.org/10.1557/jmr.2020.3

    Article  Google Scholar 

  30. 30.

    Zamanlu M, Eskandani M, Barar J, Jaymand M, Pakchin PS, Farhoudi M. Enhanced thrombolysis using tissue plasminogen activator (tPA)-loaded PEGylated PLGA nanoparticles for ischemic stroke. Journal of Drug Delivery Science and Technology. 2019;53. https://doi.org/10.1016/j.jddst.2019.101165.

  31. 31.

    Mozafari Z, Massoumi B, Jaymand M (2019) A Novel Stimuli-Responsive Magnetite Nanocomposite as De Novo Drug Delivery System. Polym-Plast Tech Mat 58(4):405–418. https://doi.org/10.1080/03602559.2018.1471718

    CAS  Article  Google Scholar 

  32. 32.

    Ghapanvari M, Madrakian T, Afkhami A, Ghoorchian A (2020) A modified carbon paste electrode based on Fe3O4@multi-walled carbon nanotubes@polyacrylonitrile nanofibers for determination of imatinib anticancer drug. J Appl Electrochem 50(2):281–294. https://doi.org/10.1007/s10800-019-01388-x

    CAS  Article  Google Scholar 

  33. 33.

    Alkafajy AM, Albayati TM. High performance of magnetic mesoporous modification for loading and release of meloxicam in drug delivery implementation. Materials Today Communications. 2020;23. https://doi.org/10.1016/j.mtcomm.2019.100890.

  34. 34.

    Singh B, Sharma V (2017) Crosslinking of poly(vinylpyrrolidone)/acrylic acid with tragacanth gum for hydrogels formation for use in drug delivery applications. Carbohyd Polym 157:185–195. https://doi.org/10.1016/j.carbpol.2016.09.086

    CAS  Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support (Grant Number: 980366) from Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mehdi Jaymand.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 205 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sayadnia, S., Arkan, E., Jahanban-Esfahlan, R. et al. Thermal-responsive magnetic hydrogels based on Tragacanth gum for delivery of anticancer drugs. J Polym Res 28, 90 (2021). https://doi.org/10.1007/s10965-020-02355-3

Download citation

Keywords

  • Magnetic hydrogel
  • Natural gum
  • Thermal-responsive
  • Drug delivery
  • Cancer