Recent advancements in manufacturing technologies of microcellular polymers: a review

Abstract

Significant research efforts are being pursued by numerous plastic foaming industries towards the transformation of macrocellular polymer foam to microcellular and imminent future is trending towards nanocellular polymer foams. These novel foamed plastic possess enhanced properties and easy tunability which could potentially fulfill many of the ever-evolving industrial requirements. These industrial requirements have led to several advancements in the current manufacturing technologies and as a result, new industrial-scale production technologies are being researched upon cellular plastics and its allied composites. The microcellular polymeric foams have huge industrial demand due to their improved properties such as specific strength, energy absorption, and thermal/electrical/acoustic insulation compared to their unfoamed counterparts. This review article aims to summarise the existing manufacturing technologies for producing microcellular polymers and provide an up-to-date report on the recent advancements in these manufacturing technologies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Abbreviations

CBA:

Chemical blowing agent

PBA:

Physical blowing agent

CA:

Coupling agent

NA:

Nucleating agent

CS:

Chemical surfactants

CO2 :

Carbon dioxide

ScCO2− :

Supercritical CO2

N2 :

Nitrogen

ABS:

Acrylonitrile-Butadiene-Styrene

PS:

Polystyrene

PE:

Polyethylene

PC:

Polycarbonate

PP:

Polypropylene

PMMA:

Polymethyl methacrylate

LDPE:

Low-Density Polyethylene

HDPE:

High-Density Polyethylene

PVOH:

Polyvinyl alcohol

PEG:

Polyethylene glycol

PLA:

Poly (lactic acid)

PLLA:

Poly-L-lactide

PLDLA:

Poly-L-lactide-co-D, L-lactide

PDLLA:

Poly (D, L lactic acid)

PVC:

Poly (vinyl chloride)

PLGA:

Polylactide-co-glycolide

PVOH:

Polyvinyl alcohol

PEO:

Poly (ethylene oxide)

PBS:

Poly (butylenes succinate)

PETG:

Poly (ethylene terephthalate glycol)

PCL:

Poly (ε-caprolactone)

PVA:

Polyvinyl alcohol

PVDF:

Polyvinylidene fluoride

PEI:

Polyethyleneimine

PANI:

Polyaniline

MAM:

Poly (methyl methacrylate)-poly (butyl acrylate)-poly (methyl methacrylate)

PU:

Polyurethane

WPU:

Water-borne polyurethane

ZnS:

Zinc stearate

SEP:

Sepiolites,

nC5:

Co-n-pentane

cC5:

Cyclopentane

2-EH:

2-ethyl hexanol

AW:

Apatite–wollastonite

DMF:

Dimethylformamide

CSNF:

Chitosan nanofibers

THF:

Tetrahydrofurane

EtOAc:

Ethylacetate

SEBS-g-MA:

Maleic anhydride- grafted styrene–ethylene–butylene–styrene

PP-g-MA:

Maleic anhydride-grafted polypropylene

APP:

Ammonium polyphosphate

MAPP:

Maleated PP

SB:

Sodium bicarbonate

NaCl:

Sodium chloride

HCL:

Hydrochloric Acid

NaOH:

Sodium Hydroxide

CB:

Carbon black

AC:

Activated carbon

CNT:

Carbon nanotubes

CNF:

Carbon nanofibers

GR:

Graphite

GO:

Graphene oxide

GNC:

Graphene Nano composite

GNRs:

Graphene nanoribbons

GNPs:

Graphene nanoplatelets

GS:

Graphene sheets

FGS:

Functionalized graphene sheets

MWCNT:

Multi-wall carbon nanotube

f-MWCNT:

Functionalized MWCNT

SSF:

Stainless-steel fiber

ZrO2 :

Zirconia

References

  1. 1.

    Okolieocha C, Raps D, Subramaniam K, Altstädt V (2015) Microcellular to nanocellular polymer foams: Progress (2004-2015) and future directions - A review. Eur Polym J 73:500–519

    CAS  Google Scholar 

  2. 2.

    Li R, Zeng D, Liu Q, Li L, Fang T (2015) Physical properties of microcellular polymeric foams with supercritical CO 2. Mater Res Innov 19(sup5):S5–250–S5–256

    Google Scholar 

  3. 3.

    Sorrentino L, Aurilia M, Iannace S (2011) Polymeric foams from high-performance thermoplastics. Adv Polym Technol 30(3):234–243

    CAS  Google Scholar 

  4. 4.

    M Altan. Thermoplastic foams: Processing, manufacturing, and characterization. Polymerization. London: IntechOpen; 2018. 117–137 p

  5. 5.

    Xu Y, Zhang S, Peng X, Wang J (2018) Fabrication and mechanism of poly(butylene succinate) urethane ionomer microcellular foams with high thermal insulation and compressive feature. Eur Polym J 99:250–258

    CAS  Google Scholar 

  6. 6.

    Prasad K, Nikzad M, Sbarski I. Permeability control in polymeric systems: a review. Vol. 25, Journal of Polymer Research. Springer Netherlands; 2018. p. 1–20

  7. 7.

    Zhang H. Scale-up of extrusion foaming process for manufacture of polystyrene foams using carbon dioxide. University of Toronto; 2010

  8. 8.

    Nofar M, Park CB. Introduction to plastic foams and their foaming. In: Polylactide Foams. Elsevier; 2018. p. 1–16

  9. 9.

    Jin FL, Zhao M, Park M, Park SJ (2019) Recent trends of foaming in polymer processing: A review. Polymers 11(6):953

    CAS  PubMed Central  Google Scholar 

  10. 10.

    Laguna-Gutierrez E, Escudero J, Kumar V, Rodriguez-Perez MA (2018) Microcellular foaming by using subcritical CO 2 of crosslinked and non-crosslinked LDPE/clay nanocomposites. J Cell Plast 54(2):257–282

    CAS  Google Scholar 

  11. 11.

    Shea JJ. Polymeric foams: mechanisms and materials [Book review]. Vol. 21, IEEE Electrical Insulation Magazine. CRC Press; 2005. 56–56 p

  12. 12.

    Pinto J, Reglero-Ruiz JA, Dumon M, Rodriguez-Perez MA (2014) Temperature influence and CO2 transport in foaming processes of poly(methyl methacrylate)–block copolymer nanocellular and microcellular foams. J Supercrit Fluids 94:198–205

    CAS  Google Scholar 

  13. 13.

    Guanghong H, Yue W. Microcellular foam injection molding process. In: Some Critical Issues for Injection Molding. IntechOpen; 2012. 175–202

  14. 14.

    Yeh SK, Chen YR, Kang TW, Tseng TJ, Peng SP, Chu CC et al (2018) Different approaches for creating nanocellular TPU foams by supercritical CO2 foaming. J Polym Res 25(1):1–12

    CAS  Google Scholar 

  15. 15.

    Lang X, Hua, Wang D, Prakashan K, Zhang X, Zhang ZX (2017) Microcellular chlorinated polyethylene (CM) rubber foam by using N2 as blowing agent. J Polym Res 24(11):1–11

    CAS  Google Scholar 

  16. 16.

    Kumar V, Suh NP (1990) A process for making microcellular thermoplastic parts. Polym Eng Sci 30(20):1323–1329

    CAS  Google Scholar 

  17. 17.

    Goel SK, Beckman EJ (1994) Generation of microcellular polymeric foams using supercritical carbon dioxide. I: effect of pressure and temperature on nucleation. Polym Eng Sci 34(14):1137–1147

    CAS  Google Scholar 

  18. 18.

    Kumar V, Weller JE. Microcellular Foams. In: Polymeric Foam. 2009. 101–14

  19. 19.

    Bao D, Liao X, He T, Yang Q, Li G (2013) Preparation of nanocellular foams from polycarbonate/poly(lactic acid) blend by using supercritical carbon dioxide. J Polym Res 20(11):1–10

    Google Scholar 

  20. 20.

    Singh I, Gandhi A, Biswal M, Mohanty S, Nayak SK (2018) Multi-stage recycling induced morphological transformations in solid-state microcellular foaming of polystyrene. Cell Polym 37(3):121–149

    CAS  Google Scholar 

  21. 21.

    Shi X, Wang L, Kang Y, Qin J, Li J, Zhang H et al (2018) Effect of poly(butylenes succinate) on the microcellular foaming of polylactide using supercritical carbon dioxide. J Polym Res 25(11):1–12

    Google Scholar 

  22. 22.

    Sauceau M, Fages J, Common A, Nikitine C, Rodier E (2011) New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide. Prog Polym Sci 36(6):749–766

    CAS  Google Scholar 

  23. 23.

    Di Maio E (2018) Foaming of polymers with supercritical fluids and perspectives on the current knowledge gaps and challenges. J Supercrit Fluids 134:157–166

    Google Scholar 

  24. 24.

    Gandhi A, Bhatnagar N (2015) Physical blowing agent residence conditions stimulated morphological transformations in extrusion foaming. Polym-Plast Technol Eng 54(17):1812–1818

    CAS  Google Scholar 

  25. 25.

    Nalawade SP, Picchioni F, Janssen LPBM (2006) Supercritical carbon dioxide as a green solvent for processing polymer melts: processing aspects and applications. Prog Polym Sci 31(1):19–43

    CAS  Google Scholar 

  26. 26.

    Hou J, Zhao G, Wang G, Dong G, Xu J (2017) A novel gas-assisted microcellular injection molding method for preparing lightweight foams with superior surface appearance and enhanced mechanical performance. Mater Des 127:115–125

    CAS  Google Scholar 

  27. 27.

    Tomasko DL, Burley A, Feng L, Yeh SK, Miyazono K, Nirmal-Kumar S, Kusaka I, Koelling K (2009) Development of CO2 for polymer foam applications. J Supercrit Fluids 47(3):493–499

    CAS  Google Scholar 

  28. 28.

    Wang J, Zhai W, Ling J, Shen B, Zheng W, Park CB (2011) Ultrasonic irradiation enhanced cell nucleation in microcellular poly(lactic acid): A novel approach to reduce cell size distribution and increase foam expansion. Ind Eng Chem Res 50(24):13840–13847

    CAS  Google Scholar 

  29. 29.

    Guo G, Ma Q, Zhao B, Zhang D (2013) Ultrasound-assisted permeability improvement and acoustic characterization for solid-state fabricated PLA foams. Ultrason Sonochem 20(1):137–143

    CAS  PubMed  Google Scholar 

  30. 30.

    Wang H, Li W (2008) Selective ultrasonic foaming of polymer for biomedical applications. J Manuf Sci Eng 130(2):021004

    Google Scholar 

  31. 31.

    Wang X, Li W, Kumar V (2009) Creating open-celled solid-state foams using ultrasound. J Cell Plast 45(4):353–369

    CAS  Google Scholar 

  32. 32.

    Niemczewski B (2007) Observations of water cavitation intensity under practical ultrasonic cleaning conditions. Ultrason Sonochem 14(1):13–18

    CAS  PubMed  Google Scholar 

  33. 33.

    Gandhi A, Asija N, Chauhan H, Bhatnagar N (2014) Ultrasound-induced nucleation in microcellular polymers. J Appl Polym Sci 131(18):9076–9080

    Google Scholar 

  34. 34.

    Wang X, Li W, Kumar V (2006) A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications. Biomaterials. 27(9):1924–1929

    CAS  PubMed  Google Scholar 

  35. 35.

    Youn JR, Park H (1999) Bubble growth in reaction injection molded parts foamed by ultrasonic excitation. Polym Eng Sci 39(3):457–468

    CAS  Google Scholar 

  36. 36.

    Zhai W, Yu J, He J (2008) Ultrasonic irradiation enhanced cell nucleation: an effective approach to microcellular foams of both high cell density and expansion ratio. Polymer. 49(10):2430–2434

    CAS  Google Scholar 

  37. 37.

    Byon SK, Youn JR (1990) Ultrasonic processing of thermoplastic foam. Polym Eng Sci 30(3):147–152

    CAS  Google Scholar 

  38. 38.

    Gandhi A, Asija N, Kumar Gaur K, Rizvi SJA, Tiwari V, Bhatnagar N (2013) Ultrasound assisted cyclic solid-state foaming for fabricating ultra-low density porous acrylonitrile-butadiene-styrene foams. Mater Lett 94:76–78

    CAS  Google Scholar 

  39. 39.

    Gandhi A, Bhatnagar N (2015) Significance of ultrasonic cavitation field distribution in microcellular foaming of polymers. Cell Polym 34(1):1–14

    CAS  Google Scholar 

  40. 40.

    Lee KM, Lee EK, Kim SG, Park CB, Naguib HE (2009) Bi-cellular foam structure of polystyrene from extrusion foaming process. J Cell Plast 45(6):539–553

    CAS  Google Scholar 

  41. 41.

    Wang Z, Ding X, Zhao M, Wang X, Xu G, Xiang A, Zhou H (2017) A cooling and two-step depressurization foaming approach for the preparation of modified HDPE foam with complex cellular structure. J Supercrit Fluids 125:22–30

    CAS  Google Scholar 

  42. 42.

    Zhang C, Zhu B, Li D, Lee LJ (2012) Extruded polystyrene foams with bimodal cell morphology. Polymer. 53(12):2435–2442

    CAS  Google Scholar 

  43. 43.

    Bao JB, Liu T, Zhao L, Hu GH (2011) A two-step depressurization batch process for the formation of bi-modal cell structure polystyrene foams using scCO2. J Supercrit Fluids 55(3):1104–1114

    CAS  Google Scholar 

  44. 44.

    Bao JB, Weng GS, Zhao L, Liu ZF, Chen ZR (2014) Tensile and impact behavior of polystyrene microcellular foams with bi-modal cell morphology. J Cell Plast 50(4):381–393

    Google Scholar 

  45. 45.

    Ma Z, Zhang G, Yang Q, Shi X, Shi A (2014) Fabrication of microcellular polycarbonate foams with unimodal or bimodal cell-size distributions using supercritical carbon dioxide as a blowing agent. J Cell Plast 50(1):55–79

    CAS  Google Scholar 

  46. 46.

    Ma Z, Zhang G, Yang Q, Shi X, Liu Y (2015) Mechanical and dielectric properties of microcellular polycarbonate foams with unimodal or bimodal cell-size distributions. J Cell Plast 51(3):307–327

    Google Scholar 

  47. 47.

    Yu P, Mi HY, Huang A, Geng LH, Chen BY, Kuang TR, Mou WJ, Peng XF (2015) Effect of poly(butylenes succinate) on poly(lactic acid) foaming behavior: formation of open cell structure. Ind Eng Chem Res 54(23):6199–6207

    CAS  Google Scholar 

  48. 48.

    Wang X, Wang W, Liu B, Du Z, Peng X (2016) Complex cellular structure evolution of polystyrene/poly (ethylene terephthalate glycol-modified) foam using a two-step depressurization batch foaming process. J Cell Plast 52(6):595–618

    CAS  Google Scholar 

  49. 49.

    Li C, Feng LF, Gu XP, Cao K, Zhang CL (2018) In situ visualization on formation mechanism of bi-modal foam via a two-step depressurization approach. J Supercrit Fluids 135:8–16

    CAS  Google Scholar 

  50. 50.

    Chen CX, Peng HH, Guan YX, Yao SJ (2019) Morphological study on the pore growth profile of poly(ε-caprolactone) bi-modal porous foams using a modified supercritical CO2 foaming process. J Supercrit Fluids 143:72–81

    CAS  Google Scholar 

  51. 51.

    Arora KA, Lesser AJ, McCarthy TJ (1998) Preparation and characterization of microcellular polystyrene foams processed in supercritical carbon dioxide. Macromolecules. 31(14):4614–4620

    CAS  Google Scholar 

  52. 52.

    Zhang C, Zhu B, Lee LJ (2011) Extrusion foaming of polystyrene/carbon particles using carbon dioxide and water as co-blowing agents. Polymer. 52(8):1847–1855

    CAS  Google Scholar 

  53. 53.

    Nistor A, Topiar M, Sovova H, Kosek J (2017) Effect of organic co-blowing agents on the morphology of CO2 blown microcellular polystyrene foams. J Supercrit Fluids 130:30–39

    CAS  Google Scholar 

  54. 54.

    Daigneault LE, Gendron R (2001) Blends of CO2 and 2-ethyl hexanol as replacement foaming agents for extruded polystyrene. J Cell Plast 37(3):262–272

    CAS  Google Scholar 

  55. 55.

    Jiang XL, Tao Liu, Zhao L, Xu ZM, Yuan WK. Effects of blend morphology on the foaming of polypropylene/ low-density polyethylene blends during a batch foaming process. J Cell Plast 2009;45(3):225–241

  56. 56.

    Tang L, Zhai W, Zheng W (2011) Autoclave preparation of expanded polypropylene/poly(lactic acid) blend bead foams with a batch foaming process. J Cell Plast 47(5):429–446

    CAS  Google Scholar 

  57. 57.

    Kohlhoff D, Nabil A, Ohshima M (2012) In situ preparation of cross-linked polystyrene/poly(methyl methacrylate) blend foams with a bimodal cellular structure. Polym Adv Technol 23(10):1350–1356

    CAS  Google Scholar 

  58. 58.

    Wang K, Pang Y, Wu F, Zhai W, Zheng W (2016) Cell nucleation in dominating formation of bimodal cell structure in polypropylene/polystyrene blend foams prepared via continuous extrusion with supercritical CO2. J Supercrit Fluids 110:65–74

    CAS  Google Scholar 

  59. 59.

    Huang J-N, Jing X, Geng L-H, Chen B-Y, Mi H-Y, Peng X-F (2015) A novel multiple soaking temperature (MST) method to prepare polylactic acid foams with bi-modal open-pore structure and their potential in tissue engineering applications. J Supercrit Fluids 103:28–37

    CAS  Google Scholar 

  60. 60.

    Xu LQ, Huang HX (2016) Formation mechanism and tuning for bi-modal cell structure in polystyrene foams by synergistic effect of temperature rising and depressurization with supercritical CO2. J Supercrit Fluids 109:177–185

    CAS  Google Scholar 

  61. 61.

    Radhakrishna G, Dugad R, Gandhi A. Bimodal Microcellular Morphology Evaluation in ABS-Foamed Composites Developed Using Step-Wise Depressurization Foaming Process. Polym Eng Sci. 2019;pen.25265

  62. 62.

    Bernardo V, Martin-de Leon J, Pinto J, Verdejo R, Rodriguez-Perez MA (2019) Modeling the heat transfer by conduction of nanocellular polymers with bimodal cellular structures. Polymer. 160:126–137

    CAS  Google Scholar 

  63. 63.

    Gandhi A, Panda R, Mohanty S, Nayak SK (2019) Microstructure assessment of bi-modal microcellular polymeric composites developed using multi-stage depressurisation technique in solid-state foaming technology. Int J Microstruct Mater Prop 14(3):226

    Google Scholar 

  64. 64.

    Dugad R, Radhakrishna G, Gandhi A (2019) Morphological evaluation of ultralow density microcellular foamed composites developed through CO 2 -induced solid-state batch foaming technique utilizing water as co-blowing agent. Cell Polym 31:026248931989763

    Google Scholar 

  65. 65.

    Cho S, Cha SW, Seo J, Ahn J (2013) A study on the foaming ratio and optical characteristics of microcellular foamed plastics produced by a repetitive foaming process. Int J Precis Eng Manuf 14(7):1147–1152

    Google Scholar 

  66. 66.

    Seo J-H, Ohm W-S, Cho S-H, Cha SW (2011) Effects of repeated microcellular foaming process on cell morphology and foaming ratio of microcellular plastics. Polym-Plast Technol Eng 50(6):588–592

    CAS  Google Scholar 

  67. 67.

    Nawaby AV, Handa YP (2003) The second expansion cycle in ultramicrocellular foams. Cell Polym 22(4):260–268

    CAS  Google Scholar 

  68. 68.

    Radhakrishna G, Dugad R, Gandhi A, Mohanty S, Nayak SK (2019) Morphological evaluation of ultra low-density poly (methyl methacrylate) microcellular plastic developed through cyclic foaming technique. Int J Mater Eng Innov 10(4):310

    Google Scholar 

  69. 69.

    Sankaran S, Deshmukh K, Ahamed MB, Khadheer Pasha SK (2018) Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review. Compos Part A Appl Sci Manuf 114:49–71

    CAS  Google Scholar 

  70. 70.

    Singh AK, Shishkin A, Koppel T, Gupta N (2018) A review of porous lightweight composite materials for electromagnetic interference shielding. Compos Part B Eng 149:188–197

    CAS  Google Scholar 

  71. 71.

    Jiang D, Murugadoss V, Wang Y, Lin J, Ding T, Wang Z, Shao Q, Wang C, Liu H, Lu N, Wei R, Subramania A, Guo Z (2019) Electromagnetic interference shielding polymers and Nanocomposites - A review. Polym Rev 59(2):280–337

    CAS  Google Scholar 

  72. 72.

    Lu D, Mo Z, Liang B, Yang L, He Z, Zhu H, Tang Z, Gui X (2018) Flexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding. Carbon NY 133:457–463

    CAS  Google Scholar 

  73. 73.

    Huang J-C (1995) EMI shielding plastics: A review. Adv Polym Technol 14(2):137–150

    CAS  Google Scholar 

  74. 74.

    Xu L, Jia LC, Yan DX, Ren PG, Xu JZ, Li ZM (2018) Efficient electromagnetic interference shielding of lightweight carbon nanotube/polyethylene composites: via compression molding plus salt-leaching. RSC Adv 8(16):8849–8855

    CAS  Google Scholar 

  75. 75.

    Ling J, Zhai W, Feng W, Shen B, Zhang J, Zheng WG (2013) Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 5(7):2677–2684

    CAS  PubMed  Google Scholar 

  76. 76.

    Thomassin JM, Vuluga D, Alexandre M, Jérôme C, Molenberg I, Huynen I, Detrembleur C (2012) A convenient route for the dispersion of carbon nanotubes in polymers: application to the preparation of electromagnetic interference (EMI) absorbers. Polymer. 53(1):169–174

    CAS  Google Scholar 

  77. 77.

    Xu X, Bin LZM, Shi L, Bian XC, Xiang ZD (2007) Ultralight conductive carbon-nanotube-polymer composite. Small. 3(3):408–411

    CAS  PubMed  Google Scholar 

  78. 78.

    Wang G, Zhao G, Wang S, Zhang L, Park CB (2018) Injection-molded microcellular PLA/graphite nanocomposites with dramatically enhanced mechanical and electrical properties for ultra-efficient EMI shielding applications. J Mater Chem C 6(25):6847–6859

    CAS  Google Scholar 

  79. 79.

    Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) Novel carbon nanotube - polystyrene foam composites for electromagnetic interference shielding. Nano Lett 5(11):2131–2134

    CAS  PubMed  Google Scholar 

  80. 80.

    Yan D-X, Ren P-G, Pang H, Fu Q, Yang M-B, Li Z-M (2012) Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J Mater Chem 22(36):18772

    CAS  Google Scholar 

  81. 81.

    Zhang H-B, Yan Q, Zheng W-G, He Z, Yu Z-Z (2011) Tough Graphene−polymer microcellular foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 3(3):918–924

    CAS  PubMed  Google Scholar 

  82. 82.

    Shen B, Zhai W, Tao M, Ling J, Zheng W (2013) Lightweight, multifunctional polyetherimide/graphene@Fe3O 4 composite foams for shielding of electromagnetic pollution. ACS Appl Mater Interfaces 5(21):11383–11391

    CAS  PubMed  Google Scholar 

  83. 83.

    Shen B, Li Y, Zhai W, Zheng W (2016) Compressible Graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl Mater Interfaces 8(12):8050–8057

    CAS  PubMed  Google Scholar 

  84. 84.

    Zeng Z, Jin H, Chen M, Li W, Zhou L, Zhang Z (2016) Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv Funct Mater 26(2):303–310

    CAS  Google Scholar 

  85. 85.

    Ameli A, Jung PU, Park CB (2013) Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams. Carbon NY 60:379–391

    CAS  Google Scholar 

  86. 86.

    Bernal MM, Molenberg I, Estravis S, Rodriguez-Perez MA, Huynen I, Lopez-Manchado MA, Verdejo R (2012) Comparing the effect of carbon-based nanofillers on the physical properties of flexible polyurethane foams. J Mater Sci 47(15):5673–5679

    CAS  Google Scholar 

  87. 87.

    Ameli A, Nofar M, Wang S, Park CB (2014) Lightweight polypropylene/stainless-steel fiber composite foams with low percolation for efficient electromagnetic interference shielding. ACS Appl Mater Interfaces 6(14):11091–11100

    CAS  PubMed  Google Scholar 

  88. 88.

    Xu Y, Xu W, Bao J (2014) A high performance electromagnetic interference shielding epoxy composite with multiple conductive networks in the matrix. J Polym Res 21(8):1–8

    Google Scholar 

  89. 89.

    Lakes R (1987) Foam structures with a negative Poisson’s ratio. Science. 235(4792):1038–1040

    CAS  PubMed  Google Scholar 

  90. 90.

    Saxena KK, Das R, Calius EP (2016) Three decades of Auxetics research − materials with negative Poisson’s ratio: A review. Adv Eng Mater 18(11):1847–1870

    CAS  Google Scholar 

  91. 91.

    Liu Y, Hu H (2010) A review on auxetic structures and polymeric materials. Sci Res Essays 5(10):1052–1063

    Google Scholar 

  92. 92.

    Carneiro VH, Meireles J, Puga H (2013) Auxetic materials - A review. Mater Sci Pol 31(4):561–571

    Google Scholar 

  93. 93.

    Alderson A, Alderson KL (2007) Auxetic materials. Proc Inst Mech Eng Part G J Aerosp Eng 221(4):565–575

    CAS  Google Scholar 

  94. 94.

    Yang W, Li Z-M, Shi W, Xie B-H, Yang M-B (2004) Review on auxetic materials. J Mater Sci 39(10):3269–3279

    CAS  Google Scholar 

  95. 95.

    Ren X, Das R, Tran P, Ngo TD, Xie YM (2018) Auxetic metamaterials and structures: A review. Smart Mater Struct 27(2):023001

    Google Scholar 

  96. 96.

    Yousif Yousif HI, Mohammed EL-Butch A, EL-Mahdy TH, Zied KM. Auxetic Polyurethane Foam (Fabrication, Properties and Applications). Nuclear Research Helwan University (Egypt); 2012

  97. 97.

    Critchley R, Corni I, Wharton JA, Walsh FC, Wood RJK, Stokes KR (2013) A review of the manufacture, mechanical properties and potential applications of auxetic foams. Phys Status Solidi Basic Res 250(10):1963–1982

    CAS  Google Scholar 

  98. 98.

    Novak N, Vesenjak M, Ren Z (2016) Auxetic cellular materials - A review. Aust J Mech Eng 62(9):485–493

    Google Scholar 

  99. 99.

    Sanami M, Ravirala N, Alderson K, Alderson A (2014) Auxetic materials for sports applications. Procedia Eng 72:453–458

    Google Scholar 

  100. 100.

    Bianchi M, Frontoni S, Scarpa F, Smith CW (2011) Density change during the manufacturing process of PU-PE open cell auxetic foams. Phys Status Solidi 248(1):30–38

    CAS  Google Scholar 

  101. 101.

    Wang YC, Lakes R, Butenhoff A (2001) Influence of cell size on re-entrant transformation of negative Poisson’s ratio reticulated polyurethane foams. Cell Polym 20(4–6):373–385

    CAS  Google Scholar 

  102. 102.

    Yao Y, Luo Y, Xu Y, Wang B, Li J, Deng H, Lu H (2018) Fabrication and characterization of auxetic shape memory composite foams. Compos Part B Eng 152:1–7

    CAS  Google Scholar 

  103. 103.

    Alderson K, Alderson A, Ravirala N, Simkins V, Davies P (2012) Manufacture and characterisation of thin flat and curved auxetic foam sheets. Phys Status Solidi Basic Res 249(7):1315–1321

    CAS  Google Scholar 

  104. 104.

    Grima JN, Attard D, Gatt R, Cassar RN (2009) A novel process for the manufacture of Auxetic foams and for their re-conversion to conventional form. Adv Eng Mater 11(7):533–535

    CAS  Google Scholar 

  105. 105.

    Bianchi M, Scarpa F, Banse M, Smith CW (2011) Novel generation of auxetic open cell foams for curved and arbitrary shapes. Acta Mater 59(2):686–691

    CAS  Google Scholar 

  106. 106.

    Fan D, Li M, Qiu J, Xing H, Jiang Z, Tang T (2018) Novel method for preparing Auxetic foam from closed-cell polymer foam based on the steam penetration and condensation process. ACS Appl Mater Interfaces 10(26):22669–22677

    CAS  PubMed  Google Scholar 

  107. 107.

    Quadrini F, Bellisario D, Ciampoli L, Costanza G, Santo L (2016) Auxetic epoxy foams produced by solid state foaming. J Cell Plast 52(4):441–454

    CAS  Google Scholar 

  108. 108.

    Chan N, Evans KE (1997) Fabrication methods for auxetic foams. J Mater Sci 32(22):5945–5953

    CAS  Google Scholar 

  109. 109.

    Dehghani F, Annabi N (2011) Engineering porous scaffolds using gas-based techniques. Curr Opin Biotechnol 22(5):661–666

    CAS  PubMed  Google Scholar 

  110. 110.

    Zhao P, Gu H, Mi H, Rao C, Fu J, Turng L (2018) Sheng. Fabrication of scaffolds in tissue engineering: A review. Front Mech Eng 13(1):107–119

    Google Scholar 

  111. 111.

    Mi HY, Jing X, Turng LS (2014) Fabrication of porous synthetic polymer scaffolds for tissue engineering. J Cell Plast 51(2):165–196

    Google Scholar 

  112. 112.

    Cooper AI (2003) Porous materials and supercritical fluids. Adv Mater 15(13):1049–1059

    CAS  Google Scholar 

  113. 113.

    Huang C, Thomas NL (2018) Fabricating porous poly(lactic acid) fibres via electrospinning. Eur Polym J 99:464–476

    CAS  Google Scholar 

  114. 114.

    Qin Z, Zhang P, Wu Z, Yin M, Geng Y, Pan K (2018) Coaxial electrospinning for flexible uniform white-light-emitting porous fibrous membrane. Mater Des 147:175–181

    CAS  Google Scholar 

  115. 115.

    Xu T, Liang Z, Ding B, Feng Q, Fong H (2018) Polymer blend nanofibers containing polycaprolactone as biocompatible and biodegradable binding agent to fabricate electrospun three-dimensional scaffolds/structures. Polymer. 151:299–306

    CAS  Google Scholar 

  116. 116.

    Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: A review. Int J Polym Sci 2011:1–19

    Google Scholar 

  117. 117.

    Mohanty S, Sanger K, Heiskanen A, Trifol J, Szabo P, Dufva M, Emnéus J, Wolff A (2016) Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching. Mater Sci Eng C 61:180–189

    CAS  Google Scholar 

  118. 118.

    Seleznev VA, Prinz VY (2017) Hybrid 3D–2D printing for bone scaffolds fabrication. Nanotechnology. 28(6):064004

    CAS  PubMed  Google Scholar 

  119. 119.

    Mancuso E, Alharbi N, Bretcanu OA, Marshall M, Birch MA, McCaskie AW et al (2017) Three-dimensional printing of porous load-bearing bioceramic scaffolds. Proc Inst Mech Eng Part H J Eng Med 231(6):575–585

    Google Scholar 

  120. 120.

    Jakus AE, Secor EB, Rutz AL, Jordan SW, Hersam MC, Shah RN (2015) Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9(4):4636–4648

    CAS  PubMed  Google Scholar 

  121. 121.

    Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials. 23(4):1169–1185

    CAS  PubMed  Google Scholar 

  122. 122.

    Wang X, Salick MR, Gao Y, Jiang J, Li X, Liu F, Cordie T, Li Q, Turng LS (2018) Interconnected porous poly(ɛ-caprolactone) tissue engineering scaffolds fabricated by microcellular injection molding. J Cell Plast 54(2):379–397

    CAS  Google Scholar 

  123. 123.

    Aram E, Mehdipour-Ataei S (2016) A review on the micro- and nanoporous polymeric foams: preparation and properties. Int J Polym Mater Polym Biomater 65(7):358–375

    CAS  Google Scholar 

  124. 124.

    Huang A, Mi H, Peng X, Jiang Y, Turng L-S, Napiwocki B (2017) Fabrication of poly(ϵ-caprolactone) tissue engineering scaffolds with fibrillated and interconnected pores utilizing microcellular injection molding and polymer leaching. RSC Adv 7(69):43432–43444

    CAS  Google Scholar 

  125. 125.

    Jing X, Mi HY, Cordie T, Salick M, Peng XF, Turng LS (2014) Fabrication of porous poly(ε-caprolactone) scaffolds containing chitosan nanofibers by combining extrusion foaming, leaching, and freeze-drying methods. Ind Eng Chem Res 53(46):17909–17918

    CAS  Google Scholar 

  126. 126.

    Gandhi A, Bhatnagar N (2015) Surface quenching induced microstructure transformations in extrusion foaming of porous sheets. Int Polym Process 30(3):397–402

    CAS  Google Scholar 

  127. 127.

    Jaganathan SK, Mani MP, Palaniappan SK, Rathanasamy R (2018) Fabrication and characterisation of nanofibrous polyurethane scaffold incorporated with corn and neem oil using single stage electrospinning technique for bone tissue engineering applications. J Polym Res 25(7):1–12

    CAS  Google Scholar 

  128. 128.

    Thakare VG, Joshi PA, Godse RR, Bhatkar VB, Wadegaokar PA, Omanwar SK (2017) Fabrication of polycaprolactone/zirconia nanofiber scaffolds using electrospinning technique. J Polym Res 24(12):1–11

    CAS  Google Scholar 

  129. 129.

    Matuana LM, Diaz CA (2010) Study of cell nucleation in microcellular poly(lactic acid) foamed with supercritical CO 2 through a continuous-extrusion process. Ind Eng Chem Res 49(5):2186–2193

    CAS  Google Scholar 

  130. 130.

    Gomes ME, Godinho JS, Tchalamov D, Cunha AM, Reis RL (2002) Alternative tissue engineering scaffolds based on starch: processing methodologies, morphology, degradation and mechanical properties. Mater Sci Eng C 20(1–2):19–26

    Google Scholar 

  131. 131.

    Pintado-Sierra M, Delgado L, Aranaz I, Marcos-Fernández Á, Reinecke H, Gallardo A, Zeugolis D, Elvira C (2014) Surface hierarchical porosity in poly (ε-caprolactone) membranes with potential applications in tissue engineering prepared by foaming in supercritical carbon dioxide. J Supercrit Fluids 95:273–284

    CAS  Google Scholar 

  132. 132.

    Cuénoud M, Bourban PE, Plummer CJG, Månson JAE (2012) Plasticization of polylactide foams for tissue engineering. J Cell Plast 48(5):409–432

    Google Scholar 

  133. 133.

    Floren M, Spilimbergo S, Motta A, Migliaresi C (2011) Porous poly(D,L-lactic acid) foams with tunable structure and mechanical anisotropy prepared by supercritical carbon dioxide. J Biomed Mater Res Part B Appl Biomater 99B(2):338–349

    CAS  Google Scholar 

  134. 134.

    Singh L, Kumar V, Ratner BD (2004) Generation of porous microcellular 85/15 poly (dl-lactide-co-glycolide) foams for biomedical applications. Biomaterials. 25(13):2611–2617

    CAS  PubMed  Google Scholar 

  135. 135.

    Gardner DJ, Han Y, Wang L (2015) Wood–plastic composite technology. Curr For Rep 1(3):139–150

    Google Scholar 

  136. 136.

    Niska KO, Sain M. Wood-Polymer Composites. Wood-Polymer Composites. Woodhead Publishing; 2008. 1–366 p

  137. 137.

    Chan CM, Vandi LJ, Pratt S, Halley P, Richardson D, Werker A, Laycock B (2018) Composites of Wood and biodegradable thermoplastics: A review. Polym Rev 58(3):444–494

    CAS  Google Scholar 

  138. 138.

    Matuana LM, Stark NM (2014) The use of wood fibers as reinforcements in composites. Biofiber Reinf Compos Mater 1:648–688

    Google Scholar 

  139. 139.

    Zhang ZX, Zhang J, Lu B-X, Xin ZX, Kang CK, Kim JK (2012) Effect of flame retardants on mechanical properties, flammability and foamability of PP/wood–fiber composites. Compos Part B Eng 43(2):150–158

    CAS  Google Scholar 

  140. 140.

    Zhang S, Rodrigue D, Riedl B (2005) Preparation and morphology of polypropylene/wood flour composite foams via extrusion. Polym Compos 26(6):731–738

    CAS  Google Scholar 

  141. 141.

    Faruk O, Bledzki AK, Matuana LM (2007) Microcellular foamed Wood-plastic composites by different processes: a review. Macromol Mater Eng 292(2):113–127

    CAS  Google Scholar 

  142. 142.

    Li Q, Matuana LM (2003) Foam extrusion of high density polyethylene/wood-flour composites using chemical foaming agents. J Appl Polym Sci 88(14):3139–3150

    CAS  Google Scholar 

  143. 143.

    Lee YH, Kuboki T, Park CB, Sain M (2011) The effects of nanoclay on the extrusion foaming of wood fiber/polyethylene nanocomposites. Polym Eng Sci 51(5):1014–1022

    CAS  Google Scholar 

  144. 144.

    Bledzki AK, Faruk O (2006) Injection moulded microcellular wood fibre–polypropylene composites. Compos Part A Appl Sci Manuf 37(9):1358–1367

    Google Scholar 

  145. 145.

    Xie B, Cui YH, Xu J, Wang XX, Zhang HH, Zhang ZD (2012) Investigation on microstructure and properties of foamed (wood fiber)/(recycled polypropylene) composites. J Vinyl Addit Technol 18(2):105–112

    CAS  Google Scholar 

  146. 146.

    Rizvi GM, Guo G, Park CB, Kim YS (2005) Critical issues in extrusion foaming of plastic/Woodfiber composites. Cell Polym 24(6):347–362

    CAS  Google Scholar 

  147. 147.

    Choe H, Sung G, Kim JH (2018) Chemical treatment of wood fibers to enhance the sound absorption coefficient of flexible polyurethane composite foams. Compos Sci Technol 156:19–27

    CAS  Google Scholar 

  148. 148.

    Feng A, Wu G, Wang Y, Pan C (2017) Synthesis, preparation and mechanical property of Wood Fiber-reinforced poly(vinyl chloride) composites. J Nanosci Nanotechnol 17(6):3859–3863

    CAS  Google Scholar 

  149. 149.

    Yeh SK, Hsieh CC, Chang HC, Yen CCC, Chang YC (2015) Synergistic effect of coupling agents and fiber treatments on mechanical properties and moisture absorption of polypropylene-rice husk composites and their foam. Compos Part A Appl Sci Manuf 68:313–322

    CAS  Google Scholar 

  150. 150.

    Zhang Z-X, Gao C, Xin ZX, Kim JK (2012) Effects of extruder parameters and silica on physico-mechanical and foaming properties of PP/wood-fiber composites. Compos Part B Eng 43(4):2047–2057

    CAS  Google Scholar 

  151. 151.

    Koay SC, Subramanian V, Chan MY, Pang MM, Tsai KY, Cheah KH (2018) Preparation and Characterization of Wood Plastic Composite Made Up of Durian Husk Fiber and Recycled Polystyrene Foam. Narayana Namasivayam S, Hosseini Fouladi M, Eunice Phang SW, Chua BL, Chow YH, Yong LC, et al., editors. MATEC Web Conf 152:–02019

  152. 152.

    Tawfik ME, Eskander SB, Nawwar GA (2017) Hard wood-composites made of rice straw and recycled polystyrene foam wastes. J Appl Polym Sci 10:134(18)

    Google Scholar 

  153. 153.

    Chun KS, Subramaniam V, Yeng CM, Meng PM, Ratnam CT, Yeow TK et al (2018) Wood plastic composites made from post-used polystyrene foam and agricultural waste. J Thermoplast Compos Mater 13:089270571879983

    Google Scholar 

  154. 154.

    Rachtanapun P, Selke SEM, Matuana LM (2003) Microcellular foam of polymer blends of HDPE/PP and their composites with wood fiber. J Appl Polym Sci 88(12):2842–2850

    CAS  Google Scholar 

  155. 155.

    Mengeloglu F, Matuana LM (2001) Foaming of rigid PVC/wood-flour composites through a continuous extrusion process. J Vinyl Addit Technol 7(3):142–148

    CAS  Google Scholar 

  156. 156.

    Khoshnoud P, Abu-Zahra N (2017) Properties of rigid polyvinyl chloride foam composites reinforced with different shape fillers. J Thermoplast Compos Mater 30(11):1541–1559

    CAS  Google Scholar 

Download references

Acknowledgements

Financial assistance has been received from the Department of Science and Technology (DST), Government of India under the project titled “Development of Microcellular & Nanocellular 3D Printing Process to Manufacturing Acrylonitrile Butadiene Styrene Foamed Products”.

Grant order: DST/TDT/AMT/2017/092 (G).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rupesh Dugad.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dugad, R., Radhakrishna, G. & Gandhi, A. Recent advancements in manufacturing technologies of microcellular polymers: a review. J Polym Res 27, 182 (2020). https://doi.org/10.1007/s10965-020-02157-7

Download citation

Keywords

  • Microcellular
  • Ultrasound-aided foaming
  • Bimodal foaming
  • EMI shielding
  • Wood fiber composites
  • Porous foam