Selective removal of tetracycline residue in milk samples using a molecularly imprinted polymer

Abstract

In the present work, the synthesis and characterisation of a molecularly imprinted polymer (MIP) by precipitation polymerisation using tetracycline (TC) as a template molecule, methacrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker, persulphate as an initiator, and methanol as a porogen solvent is described. The molecular recognition properties and selectivity of MIPs against four TCs [(TC), oxytetracycline (OT), chlortetracycline (CT), and doxycycline (DT)] were evaluated, and the results demonstrated high selectivity for four TCs in milk samples without sample treatment. Under the optimal synthesis conditions (TC/methacrylic acid/ethylene glycol dimethacrylate ratio of 1.0:7.0:50.0), the percent removal obtained was 81.83% for TC, 95.47% for OT, 96.44% for CT, and 93.25% for DT using 1.0 mL of the sample, 20 mg of the sorbent, a pH of 6.0, and 15 min of contact time. One of the tested samples was positive for the presence of OT, with a concentration of 19.83 μg L−1, ensuring the complete removal of TC using the proposed method. The method provided significant data regarding the development of efficient and selective materials in the removal of several residues and contaminants.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Guarddon M, Miranda JM, Rodríguez JA, Vázquez BI, Cepeda A, Franco CM (2011) Real-time polymerase chain reaction for the quantitative detection of tetA and tetB bacterial tetracycline resistance genes in food. Int J Food Microbiol 146:284–289. https://doi.org/10.1016/j.ijfoodmicro.2011.02.026

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Gu Y, Walker C, Ryan ME, Payne JB, Golub LM (2012) Non-antibacterial tetracycline formulations: clinical applications in dentistry and medicine. J Oral Microbiol 4:1–14. https://doi.org/10.3402/jom.v4i0.19227

    CAS  Article  Google Scholar 

  3. 3.

    Ibarra IS, Rodriguez JA, Miranda J, Vega M, Barrado E (2011) Magnetic solid phase extraction based on phenyl silica adsorbent for the determination of tetracyclines in milk samples by capillary electrophoresis. J Chromatogr A 1218:2196–2202. https://doi.org/10.1016/j.chroma.2011.02.046

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Suárez B, Santos B, Simonet BM, Cárdenas S, Varcárcel M (2007) Solid-phase extraction-capillary electrophoresis-mass spectrometry for the determination of tetracyclines residues in surface water by using carbon nanotubes as sorbent material. J Chomatogr A 1175:127–132. https://doi.org/10.1016/j.chroma.2007.10.033

    CAS  Article  Google Scholar 

  5. 5.

    Grenni P, Ancona V, Barra CA (2018) Ecological effects of antibiotics on natural ecosystems: a review. Microchem J 136:25–39. https://doi.org/10.1016/j.microc.2017.02.006

    CAS  Article  Google Scholar 

  6. 6.

    Liu Y, Yang H, Yang S, Hu Q, Cheng H, Liu H, Qiu Y (2013) High-performance liquid chromatography using pressurized liquid extraction for the determination of seven tetracyclines in egg, fish and shrimp. J Chromatogr B 917-918:11–17. https://doi.org/10.1016/j.jchromb.2012.12.036

    CAS  Article  Google Scholar 

  7. 7.

    Mookantsa SOS, Dube S, Nindi MM (2016) Development and application of a dispersive liquid–liquid microextraction method for the determination of tetracyclines in beef by liquid chromatography mass spectrometry. Talanta 148:321–328. https://doi.org/10.1016/j.talanta.2015.11.006

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Moudgil P, Bedi JS, Aulakh RS, Gill JPS, Kumar A (2019) Validation of HPLC multi-residue method for determination of fluoroquinolones, tetracycline, sulphonamides and chloramphenicol residues in bovine milk. Food Anal Method 12:338–346. https://doi.org/10.1007/s12161-018-1365-0

    Article  Google Scholar 

  9. 9.

    Islas G, Rodriguez JA, Perez-Silva I, Miranda JM, Ibarra IS (2018) Solid-phase extraction and large-volume sample staking-capillary electrophoresis for determination of tetracycline residues in milk. J Anal Methods Chem 2018:1–7. https://doi.org/10.1155/2018/5394527

    CAS  Article  Google Scholar 

  10. 10.

    Kemper N (2018) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic 8:1–13 https://doi.org/10.1016/j.ecolind.2007.06.002

    Article  Google Scholar 

  11. 11.

    Manzetti S, Ghisi R (2014) The environmental release and fate of antibiotics. Mar Pollut Bull 79:7–15. https://doi.org/10.1016/j.marpolbul.2014.01.005

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Pérez-Rodríguez M, Pellerano RG, Pezza L, Pezza HR (2018) An overview of the main foodstuff sample preparation technologies for tetracycline residue determination. Talanta 182:1–21. https://doi.org/10.1016/j.talanta.2018.01.058

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    United States Food and Drugs Administration (FDA) (2017) National Drug Residue Milk Monitoring Program: 2017. Available online: https://www.fda.gov/food/food-compliance-programs/national-drug-residue-milk-monitoring-program (accessed on 10.07.2019)

  14. 14.

    European Commision Regulation 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Off J Eur Union, L15, 1–72

  15. 15.

    Codex Alimentarius Commision (CAC) (2015) Límites máximos de residuos (LMR) y recomendaciones sobre la gestión de riesgos (RGR) para residuos de medicamentos veterinarios en los alimentos. CAC/MRL 02-2015 1–40

  16. 16.

    Malik AH, Iyer PK (2017) Conjugated polyelectrolyte based sensitive detection and removal of antibiotics tetracycline from water. ACS Appl Mater Inter 9:4433–4439. https://doi.org/10.1021/acsami.6b13949

    CAS  Article  Google Scholar 

  17. 17.

    Wang T, Pan X, Ben W, Wang J, Hou P, Qiang Z (2017) Adsorptive removal of antibiotics from water using magnetic ion exchange resin. J Environ Sci 52:111–117. https://doi.org/10.1016/j.jes.2016.03.017

    Article  Google Scholar 

  18. 18.

    Ahmed MB, Zhou JL, Ngo HH, Guo W (2015) Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci Total Environ 532:112–126. https://doi.org/10.1016/j.scitotenv.2015.05.130

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Rivera-Utrilla J, Gómez-Pacheco C, Sánchez-Polo M, López-Peñalver JJ, Ocampo-Pérez R (2013) Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents. J Environ Manag 131:16–24. https://doi.org/10.1016/j.jenvman.2013.09.024

    CAS  Article  Google Scholar 

  20. 20.

    Wang D, Jia F, Wang H, Chen F, Fang Y, Dong W, Zeng G, Li X, Yang Q, Yuan X (2018) Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs. J Colloid Interf Sci 519:273–284. https://doi.org/10.1016/j.jcis.2018.02.067

    CAS  Article  Google Scholar 

  21. 21.

    Lin XH, Aik SXL, Angkasa J, Le Q, Chooi KS, Li SFY (2018) Selective and sensitive sensors based on molecularly imprinted poly(vinylidene fluoride) for determination of pesticides and chemical threat agent simulants. Sensor Actuat B-Chem 258:228–237. https://doi.org/10.1016/j.snb.2017.11.070

    CAS  Article  Google Scholar 

  22. 22.

    Cela-Pérez MC, Lasagabáster A, Abad-López MJ, López-Vilariño JM, Gónzalez-Rodríguez MV (2013) A study of competitive molecular interaction effects on imprinting of molecularly imprinted polymers. Vib Spectrosc 65:74–83. https://doi.org/10.1016/j.vibspec.2012.12.002

    CAS  Article  Google Scholar 

  23. 23.

    Hu Y, Pan J, Zhang K, Lian H, Li G (2013) Novel applications of molecularly-imprinted polymers in sample preparation. TrAc-Trends Anal Chem 43:37–52. https://doi.org/10.1016/j.trac.2012.08.014

    CAS  Article  Google Scholar 

  24. 24.

    Tan F, Sun D, Gao J, Zhao Q, Wang X, Teng F, Quan X, Chen J (2013) Preparation of molecularly imprinted polymer nanoparticles for selective removal of fluoroquinolone antibiotics in aqueous solution. J Hazard Mater 244:750–757. https://doi.org/10.1016/j.jhazmat.2012.11.003

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Caro E, Marcé RM, Cormack PAG, Sherrington DC, Borrull F (2006) Novel enrofloxacin imprinted polymer applied to the solid-phase extraction of fluorinated quinolones from urine and tissue samples. Anal Chim Acta 562:145–151. https://doi.org/10.1016/j.aca.2006.01.080

    CAS  Article  Google Scholar 

  26. 26.

    Ebrahimzadeh H, Asgharinezhad AA, Mozzen E, Amini MM, Sadeghi O (2015) A magnetic ion-imprinted polymer for lead(II) determination: a study on the adsorption of lead(II) by beverages. J Food Compos Anal 41:74–80. https://doi.org/10.1016/j.jfca.2015.02.001

    CAS  Article  Google Scholar 

  27. 27.

    Huang W, Kong Y, Yang W, Ni X, Wang N, Lu Y, Xu W (2016) Preparation and characterization of novel thermosensitive magnetic molecularly imprinted polymers for selective recognition of norfloxacin. J Polym Res 23:94. https://doi.org/10.1007/s10965-016-0972-y

    CAS  Article  Google Scholar 

  28. 28.

    Monier M, Abdel-Latif DA (2017) Fabrication of au(III) ion-imprinted polymer based on thiol-modified chitosan. Int J Biol Macromol 105:777–787. https://doi.org/10.1016/j.ijbiomac.2017.07.098

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Speltini A, Scalabrini A, Maraschi F, Sturini M, Profumo A (2017) Newest applications of molecularly imprinted polymers for extraction of contaminants from environmental and food matrices: a review. Anal Chim Acta 974:1–26. https://doi.org/10.1016/j.aca.2017.04.042

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Puzio K, Claude B, Amalric L, Berho C, Grellet E, Bayoudh S, Nehmé R, Morin P (2014) Molecularly imprinted polymer dedicated to the extraction of glyphosate in natural waters. J Chromatogr A 1361:1–8. https://doi.org/10.1016/j.chroma.2014.07.043

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Ahmad AL, Lah NFC, Low SC (2018) Configuration of molecular imprinted polymer for electrochemical atrazine detection. J Polym Res 25:243. https://doi.org/10.1007/s10965-018-1595-2

    CAS  Article  Google Scholar 

  32. 32.

    Sajini T, Gigimol MG, Mathew B (2019) Kinetic and thermodynamic studies of molecularly imprinted polymers for the selective adsorption and specific enantiomeric recognition of D-mandelic acid. J Polym Res 26:88. https://doi.org/10.1007/s10965-019-1746-0

    CAS  Article  Google Scholar 

  33. 33.

    Ashley J, Shahbazi MA, Kant K, Chidambara VA, Wolff A, Bang DD, Sun Y (2017) Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives. Biosens Bioelectron 91:606–615. https://doi.org/10.1016/j.bios.2017.01.018

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Kadhem AJ, Xiang S, Nagel S, Lin C, Fidalgo de Cortalezzi M (2018) Photonic molecularly imprinted polymer film for the detection of testosterone in aqueous samples. Polymer 10:349. https://doi.org/10.3390/polym10040349

    CAS  Article  Google Scholar 

  35. 35.

    Oliveira FM, Segatelli MG, Tarley CRT (2015) Preparation of a new restricted access molecularly imprinted hybrid adsorbent for the extraction of folic acid from milk powder samples. Anal Methods 8:656–665. https://doi.org/10.1039/c5ay02410b

    Article  Google Scholar 

  36. 36.

    Sánchez-Polo M, Velo-Gala I, López-Peñalver JJ, Rivera-Utrilla J (2015) Molecular imprinted polymer to remove tetracycline from aqueous solutions. Micropor Mesopor Mat 203:32–40. https://doi.org/10.1016/j.micromeso.2014.10.022

    CAS  Article  Google Scholar 

  37. 37.

    Lee SH, Doong RA (2012) Adsorption and selective recognition of 17ß-estradiol by molecularly imprinted polymers. J Polym Res 19:9939. https://doi.org/10.1007/s10965-012-9939-9

    CAS  Article  Google Scholar 

  38. 38.

    Asman S, Mohamad S, Sarih NM (2005) Exploiting β-cyclodextrin in molecular imprinting for achieving recognition of benzylparaben in aqueous media. Int J Mol Sci 16:3656–3676. https://doi.org/10.3390/ijms16023656

    CAS  Article  Google Scholar 

  39. 39.

    Ashkenani H, Taher MA (2012) Selective voltammetric determination of cu(II) on multiwalled carbon nanotubes and nano-porous cu-ion imprinted polymer. J Electroanal Chem 683:80–87. https://doi.org/10.1016/j.jelechem.2012.08.010

    CAS  Article  Google Scholar 

  40. 40.

    Cai W, Gupta RB (2004) Molecularly-imprinted polymers selective for tetracycline binding. Sep Purif Technol 35:215–221. https://doi.org/10.1016/S1383-5866(03)00143-6

    CAS  Article  Google Scholar 

  41. 41.

    Regal P, Díaz-Bao M, Barreiro R, Cepeda A, Fente C (2012) Application of molecularly imprinted polymers in food analysis: clean-up and chromatographic improvements. Cent Eur J Chem 10:766–784. https://doi.org/10.2478/s11532-012-0016-3

    Article  Google Scholar 

  42. 42.

    Konicki W, Aleksandrak M, Mijowska E (2017) Equilibrium, kinetic and thermodynamic studies on adsoption of cationic dyes from aqueous solutions using grapheme oxide. Chem Eng Res Des 123:35–49. https://doi.org/10.1016/j.cherd.2017.03.036

    CAS  Article  Google Scholar 

  43. 43.

    Konicki W, Aleksandrak M, Monszyński D, Mijowska E (2017) Adsoption of anionic azo-dyes from aqueous solutions onto grapheme oxide: equilibrium, kinetic and thermodynamic studies. J Colloid Interf Sci 496:188–200. https://doi.org/10.1016/j.jcis.2017.02.031

    CAS  Article  Google Scholar 

  44. 44.

    Khoo WC, Kamaruzaman S, Lim HN, Jamil SNAM, Yahaya N (2019) Synthesis and characterization of graphene oxide-molecularly imprinted polymer for Neopterin adsorption study. J Polym Res 26:184. https://doi.org/10.1007/s10965-019-1847-9

    CAS  Article  Google Scholar 

  45. 45.

    Song X, Niu Y, Zhang P, Zhang C, Zhang Z, Zhu Y, Qu R (2017) Removal of co(II) from fuel ethanol by silica-gel supported PAMAM dendrimers: combined experimental and theoretical study. Fuel 199:91–101. https://doi.org/10.1016/j.fuel.2017.02.076

    CAS  Article  Google Scholar 

  46. 46.

    Jiang W, Beloglava NV, Wang Z, Jiang H, Wen K, de Saeger S, Luo P, Wu Y, Shen J (2015) Development of a multiplex flow-through immunoaffinity chromatography test for the on-site of 14 sulfonamide and 13 quinolone residues in milk. Biosens Bioelectron 66:124–128. https://doi.org/10.1016/j.bios.2014.11.004

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Zhang YD, Zheng N, Han RW, Zheng BQ, Yu ZN, Li SL, Zheng SS, Wang JQ (2014) Occurrence of tetracyclines, sulfonamides, sulfamethazine and quinolones in pasteurized milk and UHT milk in China’s market. Food Control 36:238–242. https://doi.org/10.1016/j.foodcont.2013.08.012

    CAS  Article  Google Scholar 

  48. 48.

    Gaucheron F (2005) The minerals of milk. Reproduction Nutr Develop 45:473–483. https://doi.org/10.1051/rnd:2005030

    CAS  Article  Google Scholar 

  49. 49.

    Aggarwal S, Singh RY, Sing G, Sharma R (2016) Synthesis and characterization of oxytetracycline imprinted magnetic polymer for application in food. Appl Nanosci 6:209–214. https://doi.org/10.1007/s13204-015-0437-3

    CAS  Article  Google Scholar 

  50. 50.

    Dai J, Pan J, Xu L, Li X, Zhou Z, Zhang R, Yan Y (2012) Preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization for the selective recognition of tetracycline from aqueous medium. J Hazard Mater 205-206:179–188. https://doi.org/10.1016/j.jhazmat.2011.12.056

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Kong J, Wang Y, Nie C, Ran D, Jia X (2012) Preparation of magnetic mixed-templates molecularly imprinted polymer for the separation of tetracycline antibiotics from egg and honey samples. Anal Methods 4:1005–1011. https://doi.org/10.1039/c2ay05662c

    CAS  Article  Google Scholar 

  52. 52.

    Suedde R, Srichana T, Chuchome T, Kongmark U (2004) Use of a molecularly imprinted polymers from a mixture of tetracycline and its degradation products to procedure affinity membranes for the removal of tetracycline from water. J Chromatogr B 811:191–200. https://doi.org/10.1016/j.jchromb.2004.08.044

    CAS  Article  Google Scholar 

  53. 53.

    Yeşilova E, Osman B, Kara A, Tümay ÖT (2018) Molecularly imprinted particle embedded composite cryogel for selective tetracycline adsorption. Sep Purifi Technol 200:155–163. https://doi.org/10.1016/j.seppur.2018.02.002

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Programa para el Desarrollo Profesional Docente, para el Tipo Superior (PRODEP), Consejo Nacional de Ciencia y Tecnología (CONACyT) (SNI distinction as research membership and scholarships), for the financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to I.S. Ibarra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aguilar, J.F., Miranda, J.M., Rodriguez, J.A. et al. Selective removal of tetracycline residue in milk samples using a molecularly imprinted polymer. J Polym Res 27, 176 (2020). https://doi.org/10.1007/s10965-020-02139-9

Download citation

Keywords

  • Molecularly imprinted polymers
  • Dispersive solid phase microextraction
  • Tetracyclines
  • Efficient removal
  • Milk samples