Recent developments in stimuli-responsive poly(ionic liquid)s

Abstract

The current challenge is to focus on the fundamental understanding of ion-containing polymers. Poly(ionic liquid)s (PILs) belong to an important subclass of ionic polyelectrolyte with broad range of structural and functional properties. This review outlines the different kinds of stimuli-responsive PILs those are recently developed, specifically highlighting our own work and their materialistic applications. A brief introduction is also been provided to describe the advancement of PILs over their monomeric ionic liquids’ (ILs) moiety and their smart responsive behaviour towards different chemical, physical and biochemical stimuli such as pH, redox, CO2, temperature, light, enzyme etc. The thermoresponsive PILs with lower critical solution temperature (LCST)- or upper critical solution temperature (UCST)-type phase transition behaviours are discussed in a generalized way. The pH-responsive PILs also prove themselves as a potent candidate for potential applications in the biomedical area including therapy, drug delivery, diagnostics, etc. and the synthetic developments of those are also described here briefly. The rise of atmospheric CO2 level is now a matter of worldwide concern. Thus, in particular, CO2 responsive materials have attracted much attention and in this regards, PILs are much familiar and are found to be sorptive in nature both physically and chemically. Therefore, it is indeed important to describe the role and potential applications of PILs those are responsive to CO2. Polymerized ionic liquids (PILs), those are responsive to other different stimuli such as photo, redox etc., are also described in this review.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

References

  1. 1.

    Weber CC, Masters AF, Maschmeyer T (2013) Structural features of ionic liquids: consequences for material preparation and organic reactivity. Green Chem 15:2655–2679

    CAS  Google Scholar 

  2. 2.

    Wilkes JS, Zaworotko MJ (1992) Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Chem Commun 1992:965-967

  3. 3.

    Biswas Y, Mandal TK (2017) Structural variation in homopolymers bearing zwitterionic and ionic liquid pendants for achieving tunable multi-stimuli responsiveness and hierarchical nanoaggregates. Macromolecules 50:9807–9820

    CAS  Google Scholar 

  4. 4.

    Hemp ST, Zhang M, Tamami M, Long TE (2013) Phosphonium Ionenes from well-defined step-growth polymerization: thermal and melt rheological properties. Polym Chem 4:3582–3590

    CAS  Google Scholar 

  5. 5.

    Tang J, Tang H, Sun W, Radosz M, Shen Y (2005) Low-pressure CO2 sorption in ammonium-based poly(ionic liquid)s. Polymer 46:12460–12467

    CAS  Google Scholar 

  6. 6.

    Williams SR, Salas-de la Cruz D, Winey KI, Long TE (2010) Ionene segmented block copolymers containing imidazolium cations: structure–property relationships as a function of hard segment content. Polymer 51:1252–1257

    CAS  Google Scholar 

  7. 7.

    Yuan J, Mecerreyes D, Antonietti M (2013) Poly(ionic liquid)s: an update. Prog Polym Sci 38:1009–1036

    CAS  Google Scholar 

  8. 8.

    Koerner H, Price G, Pearce NA, Alexander M, Vaia RA (2004) Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat Mater 3:115–120

    CAS  PubMed  Google Scholar 

  9. 9.

    Doring A, Birnbaum W, Kuckling D (2013) Responsive hydrogels–structurally and dimensionally optimized smart frameworks for applications in catalysis, micro-system technology and material science. Chem Soc Rev 42:7391–7420

    PubMed  Google Scholar 

  10. 10.

    Hoffman AS, Stayton PS (2007) Conjugates of stimuli-responsive polymers and proteins. Prog Polym Sci 32:922–932

    CAS  Google Scholar 

  11. 11.

    Sponchioni M, Palmiero UC, Moscatelli D (2019) Thermo-responsive polymers: applications of smart materials in drug delivery and tissue engineering. Mater Sci Eng C 102:589–605

    CAS  Google Scholar 

  12. 12.

    Gu H, Mu S, Qiu G, Liu X, Zhang L, Yuan Y, Astruc D (2018) Redox-stimuli-responsive drug delivery systems with supramolecular ferrocenyl-containing polymers for controlled release. Coord Chem Rev 364:51–85

    CAS  Google Scholar 

  13. 13.

    Mecerreyes D (2011) Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog Polym Sci 36:1629–1648

    CAS  Google Scholar 

  14. 14.

    Lu J, Yan F, Texter J (2009) Advanced applications of ionic liquids in polymer science. Prog Polym Sci 34:431–448

    CAS  Google Scholar 

  15. 15.

    Ricks-Laskoski HL, Snow AW (2006) Synthesis and electric field actuation of an ionic liquid polymer. J Am Chem Soc 128:12402–12403

    CAS  PubMed  Google Scholar 

  16. 16.

    Bahader A, Haoguan G, HaoGoa F, Ping W, Shaojun W, Yunsheng D (2016) Preparation and characterization of poly(vinylidene fluoride) nanocomposites containing Amphiphilic ionic liquid modified multiwalled carbon nanotubes. J Polym Res 23:184

    Google Scholar 

  17. 17.

    Hu X, Huang J, Zhang W, Li M, Tao C, Li G (2008) Photonic ionic liquids polymer for naked-eye detection of anions. Adv Mater 20:4074–4078

    CAS  Google Scholar 

  18. 18.

    Sato T, Marukane S, Narutomi T, Akao T (2007) High rate performance of a lithium polymer battery using a novel ionic liquid polymer composite. J Power Sources 164:390–396

    CAS  Google Scholar 

  19. 19.

    Cong H, Yu B, Tang J, Zhao XS (2012) Ionic liquid modified poly (2, 6-dimethyl-1, 4-phenylene oxide) for CO2 separation. J Polym Res 19:9761

    Google Scholar 

  20. 20.

    Amarasekara AS, Nguyen J, Razzaq A (2017) Acidic ionic liquid polymers: poly (bis-imidazolium-P-phenylenesulfonic acid) and applications as catalysts in the preparation of 1-amidoalkyl-2-naphthols. J Polym Res 24:52

    Google Scholar 

  21. 21.

    Chen H, Choi J-H, Salas-de la Cruz D, Winey KI, Elabd YA (2009) Polymerized ionic liquids: the effect of random copolymer composition on ion conduction. Macromolecules 42:4809–4816

    CAS  Google Scholar 

  22. 22.

    Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54:2199–2221

    CAS  Google Scholar 

  23. 23.

    Dimitrov I, Trzebicka B, Muller AHE, Dworak A, Tsvetanov CB (2007) Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci 32:1275–1343

    CAS  Google Scholar 

  24. 24.

    Dai S, Ravi P, Tam KC (2008) pH-responsive polymers: synthesis, properties and applications. Soft Matter 4:435–449

    CAS  Google Scholar 

  25. 25.

    Murthy N, Campbell J, Fausto N, Hoffman AS, Stayton PS (2003) Bioinspired pH-responsive polymers for the intracellular delivery of biomolecular drugs. Bioconjug Chem 14:412–419

    CAS  PubMed  Google Scholar 

  26. 26.

    Ercole F, Davis TP, Evans RA (2010) Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym Chem 1:37–54

    CAS  Google Scholar 

  27. 27.

    Schumers J-M, Fustin C-A, Gohy J-F (2010) Light-responsive block copolymers. Macromol Rapid Commun 31:1588–1607

    CAS  PubMed  Google Scholar 

  28. 28.

    Akhoury A, Bromberg L, Hatton TA (2011) Redox-responsive gels with tunable hydrophobicity for controlled solubilization and release of organics. ACS Appl Mater Interfaces 3:1167–1174

    CAS  PubMed  Google Scholar 

  29. 29.

    Magnusson JP, Khan A, Pasparakis G, Saeed AO, Wang W, Alexander C (2008) Ion-sensitive "isothermal" responsive polymers prepared in water. J Am Chem Soc 130:10852–10853

    CAS  PubMed  Google Scholar 

  30. 30.

    Ma R, Shi L (2014) Phenylboronic acid-based glucose-responsive polymeric nanoparticles: synthesis and applications in drug delivery. Polym Chem 5:1503–1518

    CAS  Google Scholar 

  31. 31.

    Lin S, Theato P (2013) CO2-responsive polymers. Macromol Rapid Commun 34:1118–1133

    CAS  PubMed  Google Scholar 

  32. 32.

    Pasparakis G, Vamvakaki M (2011) Multiresponsive polymers: nano-sized assemblies, stimuli-sensitive gels and smart surfaces. Polym Chem 2:1234–1248

    CAS  Google Scholar 

  33. 33.

    Urban MW (2011) Handbook of stimuli-responsive materials. Wiley-VCH, Weinheim

    Google Scholar 

  34. 34.

    Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Du H, Han R, Tang E, Zhou J, Liu S, Guo X, Wang R (2018) Synthesis of pH-responsive cellulose-G-P4VP by atom transfer radical polymerization in ionic liquid, loading, and controlled release of aspirin. J Polym Res 25:205

    Google Scholar 

  36. 36.

    Sanal T, Oruc O, Ozturk T, Hazer B (2015) Synthesis of pH-and thermo-responsive poly(Ε-caprolactone-B-4-vinyl benzyl-G-dimethyl amino ethyl methacrylate) brush type graft copolymers via RAFT polymerization. J Polym Res 22:3–12

    Google Scholar 

  37. 37.

    Moad G, Rizzardo E, Thang SH (2008) Radical addition–fragmentation chemistry in polymer synthesis. Polymer 49:1079–1131

    CAS  Google Scholar 

  38. 38.

    Hawker CJ (1994) Molecular weight control by a "living" free-radical polymerization process. J Am Chem Soc 116:11185–11186

    CAS  Google Scholar 

  39. 39.

    Wu Q, Yi J, Yin Z, Wang S, Yang Q, Wu S, Song X, Zhang G (2013) Synthesis and self-assembly of new amphiphilic thermosensitive poly (N-vinylcaprolactam)/poly (ε-caprolactone) block copolymers via the combination of ring-opening polymerization and click chemistry. J Polym Res 20:262

    Google Scholar 

  40. 40.

    Nuyken O, Pask SD (2013) Ring-opening polymerization-an introductory review. Polymers 5:361–403

    Google Scholar 

  41. 41.

    Li Y, Guo H, Gan J, Zheng J, Zhang Y, Wu K, Lu M (2015) Novel fast thermal-responsive poly (N-isopropylacrylamide) hydrogels with functional cyclodextrin interpenetrating polymer networks for controlled drug release. J Polym Res 22:91

    Google Scholar 

  42. 42.

    Sharma S, Dua A, Malik A (2017) Biocompatible stimuli responsive superabsorbent polymer for controlled release of GHK-Cu peptide for wound dressing application. J Polym Res 24:104

    Google Scholar 

  43. 43.

    Kocak G, Tuncer C, Butun V (2017) pH-responsive polymers. Polym Chem 8:144–176

    CAS  Google Scholar 

  44. 44.

    Tang J, Tang H, Sun W, Radosz M, Shen Y (2005) Poly(ionic liquid)s as new materials for CO2 absorption. J Polym Sci Part A: Polym Chem 43:5477–5489

    CAS  Google Scholar 

  45. 45.

    Tang J, Tang H, Sun W, Plancher H, Radosz M, Shen Y (2005) Poly(ionic liquid)s: a new material with enhanced and fast CO2 absorption. Chem Commun 3325–3327

  46. 46.

    Shaplov AS, Vlasov PS, Armand M, Lozinskaya EI, Ponkratov DO, Malyshkina IA, Vidal F, Okatova OV, Pavlov GM, Wandrey C, Godovikov IA, Vygodskii YS (2011) Design and synthesis of new anionic “polymeric ionic liquids” with high charge delocalization. Polym Chem 2:2609–2618

    CAS  Google Scholar 

  47. 47.

    Matsumi N, Sugai K, Miyake M, Ohno H (2006) Polymerized ionic liquids via hydroboration polymerization as single ion conductive polymer electrolytes. Macromolecules 39:6924–6927

    CAS  Google Scholar 

  48. 48.

    Alarcon DLHC, Pennadam S, Alexander C (2005) Stimuli responsive polymers for biomedical applications. Chem Soc Rev 34:276–285

    CAS  Google Scholar 

  49. 49.

    Wu G, Li Y, Han M, Liu X (2006) Novel thermo-sensitive membranes prepared by rapid bulk photo-grafting polymerization of N, N-diethylacrylamide onto the microfiltration membranes nylon. J Membr Sci 283:13–20

    CAS  Google Scholar 

  50. 50.

    Nagase K, Kobayashi J, Okano T (2009) Temperature-responsive intelligent interfaces for biomolecular separation and cell sheet engineering. J R Soc Interface 6:S293–S309

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Shimoboji T, Larenas E, Fowler T, Hoffman AS, Stayton PS (2003) Temperature-induced switching of enzyme activity with smart polymer-enzyme conjugates. Bioconjug Chem 14:517–525

    CAS  PubMed  Google Scholar 

  52. 52.

    Hocine S, Li MH (2013) Thermoresponsive self-assembled polymer colloids in water. Soft Matter 9:5839–5861

    CAS  Google Scholar 

  53. 53.

    Fujishige S, Kubota K, Ando I (1989) Phase transition of aqueous solutions of poly (N-isopropylacrylamide) and poly (N-isopropylmethacrylamide). J Phys Chem 93:3311–3313

    CAS  Google Scholar 

  54. 54.

    Sivanantham M, Feng H, Winnik F (2018) Formation of novel thermo-responsive hybrid vesicles: influence of molar ratio of lipids and heating. J Polym Res 25:251

    Google Scholar 

  55. 55.

    Orakdogen N (2012) Novel responsive poly (N,N-dimethylaminoethyl methacrylate) gel beads: preparation, mechanical properties and pH-dependent swelling behavior. J Polym Res 19:9914

    Google Scholar 

  56. 56.

    da Silva LBJ, Orefice RL (2014) Synthesis and electromechanical actuation of a temperature, pH, and electrically responsive hydrogel. J Polym Res 21:466

    Google Scholar 

  57. 57.

    Bhattacharjee RR, Chakraborty M, Mandal TK (2006) Reversible association of thermoresponsive gold nanoparticles: polyelectrolyte effect on the lower critical solution temperature of poly(vinyl methyl ether). J Phys Chem B 110:6768–6775

    CAS  PubMed  Google Scholar 

  58. 58.

    Abbasi S, Yousefi G, Tamaddon A-M (2018) Polyacrylamide–b-copolypeptide hybrid copolymer as pH-responsive carrier for delivery of paclitaxel: effects of copolymer composition on nanomicelles properties, loading efficiency and hemocompatibility. Colloids Surf A Physicochem Eng Asp 537:217–226

    CAS  Google Scholar 

  59. 59.

    Heskins M, Guillet JE (1968) Solution properties of poly (N-isopropylacrylamide). J Macromol Sci Chem 2:1441–1455

    CAS  Google Scholar 

  60. 60.

    Takeda N, Nakamura E, Yokoyama M, Okano T (2004) Temperature-responsive polymeric carriers incorporating hydrophobic monomers for effective transfection in small doses. J Control Release 95:343–355

    CAS  PubMed  Google Scholar 

  61. 61.

    Cammas S, Suzuki K, Sone C, Sakurai Y, Kataoka K, Okano T (1997) Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers. J Control Release 48:157–164

    CAS  Google Scholar 

  62. 62.

    Chilkoti A, Chen G, Stayton PS, Hoffman AS (1994) Site-specific conjugation of a temperature-sensitive polymer to a genetically engineered protein. Bioconjug Chem 5:504–507

    CAS  PubMed  Google Scholar 

  63. 63.

    Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29:1173–1222

    CAS  Google Scholar 

  64. 64.

    Vancoillie G, Frank D, Hoogenboom R (2014) Thermoresponsive poly(oligo ethylene glycol acrylates). Prog Polym Sci 39:1074–1095

    CAS  Google Scholar 

  65. 65.

    Zhao C, Ma Z, Zhu X (2019) Rational design of thermoresponsive polymers in aqueous solutions: a thermodynamics map. Prog Polymer Sci 90:269–291

    CAS  Google Scholar 

  66. 66.

    Chatterjee S, Hui P, Kan C-W (2018) Thermoresponsive hydrogels and their biomedical applications: special insight into their applications in textile based transdermal therapy. Polymers 10:480

    PubMed Central  Google Scholar 

  67. 67.

    Seuring J, Bayer FM, Huber K, Agarwal S (2011) Upper critical solution temperature of poly(N-acryloyl glycinamide) in water: a concealed property. Macromolecules 45:374–384

    Google Scholar 

  68. 68.

    Haas HC, Schuler NW (1964) Thermally reversible homopolymer gel systems. J Polym Sci Part B: Polym Lett 2:1095–1096

    Google Scholar 

  69. 69.

    Haas HC, Moreau RD, Schuler NW (1967) Synthetic thermally reversible gel systems. Ii. J Polym Sci part A-2: Polym Phys 5:915–927

    CAS  Google Scholar 

  70. 70.

    Chang Y, Chen S, Yu Q, Zhang Z, Bernards M, Jiang S (2007) Development of biocompatible interpenetrating polymer networks containing a sulfobetaine-based polymer and a segmented polyurethane for protein resistance. Biomacromolecules 8:122–127

    CAS  PubMed  Google Scholar 

  71. 71.

    Maji T, Banerjee S, Biswas Y, Mandal TK (2015) Dual-stimuli-responsive L-serine-based zwitterionic Ucst-type polymer with tunable thermosensitivity. Macromolecules 48:4957–4966

    CAS  Google Scholar 

  72. 72.

    Zhang Z, Chao T, Chen S, Jiang S (2006) Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir 22:10072–10077

    CAS  PubMed  Google Scholar 

  73. 73.

    Chang Y, Chen WY, Yandi W, Shih YJ, Chu WL, Liu YL, Chu CW, Ruaan RC, Higuchi A (2009) Dual-Thermoresponsive phase behavior of blood compatible zwitterionic copolymers containing nonionic poly (N-isopropyl acrylamide). Biomacromolecules 10:2092–2100

    CAS  PubMed  Google Scholar 

  74. 74.

    Schulz D, Peiffer D, Agarwal P, Larabee J, Kaladas J, Soni L, Handwerker B, Garner R (1986) Phase behaviour and solution properties of sulphobetaine polymers. Polymer 27:1734–1742

    CAS  Google Scholar 

  75. 75.

    Amajjahe S, Ritter H (2008) Supramolecular controlled pseudo-LCST effects of cyclodextrin-complexed poly(ionic liquid)s. Macromolecules 41:3250–3253

    CAS  Google Scholar 

  76. 76.

    Amajjahe S, Ritter H (2008) Anion Complexation of vinylimidazolium salts and its influence on polymerization. Macromolecules 41:716–718

    CAS  Google Scholar 

  77. 77.

    Seno K-I, Kanaoka S, Aoshima S (2008) Synthesis and LCST-type phase separation behavior in organic solvents of poly(vinyl ethers) with pendant imidazolium or pyridinium salts. J Polym Sci Part A: Polym Chem 46:5724–5733

    CAS  Google Scholar 

  78. 78.

    Yoshimitsu H, Kanazawa A, Kanaoka S, Aoshima S (2012) Well-defined polymeric ionic liquids with an upper critical solution temperature in water. Macromolecules 45:9427–9434

    CAS  Google Scholar 

  79. 79.

    Kohno Y, Ohno H (2012) Key factors to prepare polyelectrolytes showing temperature-sensitive lower critical solution temperature-type phase transitions in water. Aust J Chem 65:91–94

    CAS  Google Scholar 

  80. 80.

    Men Y, Li XH, Antonietti M, Yuan J (2012) Poly(tetrabutylphosphonium 4-styrenesulfonate): a poly(ionic liquid) stabilizer for graphene being multi-responsive. Polym Chem 3:871–873

    CAS  Google Scholar 

  81. 81.

    Men Y, Schlaad H, Voelkel A, Yuan J (2014) Thermoresponsive polymerized gemini dicationic ionic liquid. Polym Chem 5:3719–3724

    CAS  Google Scholar 

  82. 82.

    Men Y, Schlaad H, Yuan J (2013) Cationic poly(ionic liquid) with tunable lower critical solution temperature-type phase transition. ACS Macro Lett 2:456–459

    CAS  Google Scholar 

  83. 83.

    Soll S, Antonietti M, Yuan J (2012) Double stimuli-responsive copolymer stabilizers for multiwalled carbon nanotubes. ACS Macro Lett 1:84–87

    CAS  Google Scholar 

  84. 84.

    Xiong Y, Liu J, Wang Y, Wang H, Wang R (2012) One-step synthesis of thermosensitive nanogels based on highly cross-linked poly(ionic liquid)s. Angew Chem Inter Ed 51:9114–9118

    CAS  Google Scholar 

  85. 85.

    Karjalainen E, Aseyev V, Tenhu H (2014) Counterion-induced UCST for polycations. Macromolecules 47:7581–7587

    CAS  Google Scholar 

  86. 86.

    Blanazs A, Armes SP, Ryan AJ (2009) Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol Rapid Commun 30:267–277

    CAS  PubMed  Google Scholar 

  87. 87.

    Nystrom AM, Bartels JW, Du W, Wooley KL (2009) Perfluorocarbon-loaded shell crosslinked knedel-like nanoparticles: lessons regarding polymer mobility and self-assembly. J Polym Sci Part A: Polym Chem 47:1023–1037

    CAS  Google Scholar 

  88. 88.

    Moughton AO, Patterson JP, O'Reilly RK (2011) Reversible morphological switching of nanostructures in solution. Chem Commun 47:355–357

    CAS  Google Scholar 

  89. 89.

    Li J, Cong H, Li L, Zheng S (2014) Thermoresponse improvement of poly (N-isopropylacrylamide) hydrogels via formation of poly (sodium P-styrenesulfonate) nanophases. ACS Appl Mater Interface 6:13677–13687

    CAS  Google Scholar 

  90. 90.

    Jana S, Biswas Y, Anas M, Saha A, Mandal TK (2018) Poly[oligo(2-ethyl-2-oxazoline)acrylate]-based poly(ionic liquid) random copolymers with coexistent and tunable lower critical solution temperature- and upper critical solution temperature-type phase transitions. Langmuir 34:12653–12663

    CAS  PubMed  Google Scholar 

  91. 91.

    Biswas Y, Dule M, Mandal TK (2017) Poly(ionic liquid)-promoted solvent-borne efficient exfoliation of MoS2/MoSe2 Nanosheets for dual-responsive dispersion and polymer nanocomposites. J Phys Chem C 121:4747–4759

    CAS  Google Scholar 

  92. 92.

    Biswas Y, Maji T, Dule M, Mandal TK (2016) Tunable doubly responsive UCST-type phosphonium poly(ionic liquid): a thermosensitive dispersant for carbon nanotubes. Polym Chem 7:867–877

    CAS  Google Scholar 

  93. 93.

    Jana S, Bose A, Saha A, Mandal TK (2017) Photocleavable and tunable thermoresponsive amphiphilic random copolymer: self-assembly into micelles, dye encapsulation, and triggered release. J Polym Sci Part A: Polym Chem 55:1714–1729

    CAS  Google Scholar 

  94. 94.

    Theato P, Sumerlin BS, O'Reilly RK, Epps Iii TH (2013) Stimuli-responsive materials. Chem Soc Rev 42:7055–7056

    CAS  PubMed  Google Scholar 

  95. 95.

    Roy I, Gupta MN (2003) Smart polymeric materials: emerging biochemical applications. Chem Biol 10:1161–1171

    CAS  PubMed  Google Scholar 

  96. 96.

    Weaver JVM, Adams DJ (2010) Synthesis and application of pH-responsive branched copolymer nanoparticles (Prbns): a comparison with pH-responsive shell cross-linked micelles. Soft Matter 6:2575–2582

    CAS  Google Scholar 

  97. 97.

    Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Google Scholar 

  98. 98.

    Hu J, Zhang G, Ge Z, Liu S (2014) Stimuli-responsive tertiary amine methacrylate-based block copolymers: synthesis, supramolecular self-assembly and functional applications. Prog Polym Sci 39:1096–1143

    CAS  Google Scholar 

  99. 99.

    Na K, Lee KH, Bae YH (2004) pH-sensitivity and pH-dependent interior structural change of self-assembled hydrogel nanoparticles of pullulan acetate/oligo-sulfonamide conjugate. J Control Release 97:513–525

    CAS  PubMed  Google Scholar 

  100. 100.

    Oh KT, Yin H, Lee ES, Bae YH (2007) Polymeric nanovehicles for anticancer drugs with triggering release mechanisms. J Mater Chem 17:3987–4001

    CAS  Google Scholar 

  101. 101.

    Tan B, Tam K, Lam Y, Tan C (2005) Microstructure and rheological properties of pH-responsive core–shell particles. Polymer 46:10066–10076

    CAS  Google Scholar 

  102. 102.

    Tan BH, Ravi P, Tam KC (2006) Synthesis and characterization of novel pH-responsive polyampholyte microgels. Macromol Rapid Commun 27:522–528

    CAS  Google Scholar 

  103. 103.

    Doncom KEB, Hansell CF, Theato P, O'Reilly RK (2012) pH-switchable polymer nanostructures for controlled release. Polym Chem 3:3007–3015

    CAS  Google Scholar 

  104. 104.

    Liu S, Armes SP (2002) Polymeric surfactants for the new millennium: a pH-responsive, zwitterionic, schizophrenic diblock copolymer. Angew Chem Int Ed 41:1413–1416

    CAS  Google Scholar 

  105. 105.

    Liu S, Weaver JV, Save M, Armes SP (2002) Synthesis of pH-responsive shell cross-linked micelles and their use as nanoreactors for the preparation of gold nanoparticles. Langmuir 18:8350–8357

    CAS  Google Scholar 

  106. 106.

    Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A (2013) Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev 65:1148–1171

    CAS  PubMed  Google Scholar 

  107. 107.

    Thomas DB, Vasilieva YA, Armentrout RS, McCormick CL (2003) Synthesis, characterization, and aqueous solution behavior of electrolyte-and pH-responsive carboxybetaine-containing cyclocopolymers. Macromolecules 36:9710–9715

    CAS  Google Scholar 

  108. 108.

    Dule M, Biswas M, Paira TK, Mandal TK (2015) Hierarchical nanostructures of tunable shapes through self-aggregation of POSS end-functional polymer and poly(ionic liquid) hybrids. Polymer 77:32–41

    CAS  Google Scholar 

  109. 109.

    Matini T, Francini N, Battocchio A, Spain SG, Mantovani G, Vicent MJ, Sanchis J, Gallon E, Mastrotto F, Salmaso S (2014) Synthesis and characterization of variable conformation pH-responsive block co-polymers for nucleic acid delivery and targeted cell entry. Polym Chem 5:1626–1636

    CAS  Google Scholar 

  110. 110.

    Lu H, Liu Y, Wang B, Zheng C, Huang Z (2016) Self-assembling transition behavior of a hydrophobic associative polymer based on counterion and pH effects. Colloid Surface A 490:1–8

    CAS  Google Scholar 

  111. 111.

    Guo J, Xu Q, Zheng Z, Zhou S, Mao H, Wang B, Yan F (2015) Intrinsically antibacterial poly(ionic liquid) membranes: the synergistic effect of anions. ACS Macro Lett 4:1094–1098

    CAS  Google Scholar 

  112. 112.

    Petkovic M, Seddon KR, Rebelo LPN, Pereira CS (2011) Ionic liquids: a pathway to environmental acceptability. Chem Soc Rev 40:1383–1403

    CAS  PubMed  Google Scholar 

  113. 113.

    Guo J, Qiu L, Deng Z, Yan F (2013) Plastic reusable pH indicator strips: preparation via anion-exchange of poly(ionic liquid)s with anionic dyes. Polym Chem 4:1309–1312

    CAS  Google Scholar 

  114. 114.

    Guo J, Yuan C, Guo M, Wang L, Yan F (2014) Flexible and voltage-switchable polymer Velcro constructed using host-guest recognition between poly(ionic liquid) strips. Chem Sci 5:3261–3266

    CAS  Google Scholar 

  115. 115.

    Zhao Q, Dunlop JWC, Qiu X, Huang F, Zhang Z, Heyda J, Dzubiella J, Antonietti M, Yuan J (2014) An instant multi-responsive porous polymer actuator driven by solvent molecule sorption. Nat Commun 5:4293

    PubMed  Google Scholar 

  116. 116.

    Fielding LA, Edmondson S, Armes SP (2011) Synthesis of pH-responsive tertiary amine methacrylate polymer brushes and their response to acidic vapour. J Mater Chem 21:11773–11780

    CAS  Google Scholar 

  117. 117.

    Jacobson MZ (2009) Review of solutions to global warming, air pollution, and energy security. Energy Environ Sci 2:148–173

    CAS  Google Scholar 

  118. 118.

    D'Alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Inter Ed 49:6058–6082

    CAS  Google Scholar 

  119. 119.

    Xu S, Luo Y, Tan B (2013) Recent development of hypercrosslinked microporous organic polymers. Macromol Rapid Commun 34:471–484

    CAS  PubMed  Google Scholar 

  120. 120.

    Budd PM, McKeown NB, Fritsch D (2006) Polymers of intrinsic microporosity (Pims): high free volume polymers for membrane applications. Macromol Symp 245:403–405

    Google Scholar 

  121. 121.

    Lukose B, Kuc A, Heine T (2011) The structure of layered covalen-organic frameworks. Chem Eur J 17:2388–2392

    CAS  PubMed  Google Scholar 

  122. 122.

    Zulfiqar S, Sarwar MI, Yavuz CT (2014) Melamine based porous organic amide polymers for CO2 capture. RSC Adv 4:52263–52269

    CAS  Google Scholar 

  123. 123.

    Zhang Q, Schattling P, Theato P, Hoogenboom R (2012) Tuning the upper critical solution temperature behavior of poly (methyl methacrylate) in aqueous ethanol by modification of an activated ester comonomer. Polym Chem 3:1418–1426

    CAS  Google Scholar 

  124. 124.

    Hu Y-F, Liu Z-C, Xu C-M, Zhang X-M (2011) The molecular characteristics dominating the solubility of gases in ionic liquids. Chem Soc Rev 40:3802–3823

    CAS  PubMed  Google Scholar 

  125. 125.

    Bates ED, Mayton RD, Ntai I, Davis JH (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124:926–927

    CAS  PubMed  Google Scholar 

  126. 126.

    Zhu J, Zhou J, Zhang H, Chu R (2011) CO2 sorption capacity of porous poly(ionic liquid)s. J Polym Res 18:2011–2015

    CAS  Google Scholar 

  127. 127.

    He Z, Zhong M, Yang Y, Wu C, Yang J (2016) Synthesis of POSS-based star-shaped poly(ionic liquid)s and its application in supercritical CO2 microcellular foaming of polystyrene. J Polym Res 23:243

    Google Scholar 

  128. 128.

    Isik M, Zulfiqar S, Edhaim F, Ruiperez F, Rothenberger A, Mecerreyes D (2016) Sustainable poly(ionic liquid)s for CO2 capture based on deep eutectic monomers. ACS Sustain Chem Eng 4:7200–7208

    CAS  Google Scholar 

  129. 129.

    Zhou Y-N, Lei L, Luo Z-H, Zhu S (2017) CO2/N2-switchable thermoresponsive ionic liquid copolymer. Macromolecules 50:8378–8389

    CAS  Google Scholar 

  130. 130.

    Zhang J, Xu D, Guo J, Sun Z, Qian W, Zhang Y, Yan F (2016) CO2-responsive imidazolium-type poly(ionic liquid) gels. Macromol Rapid Commun 37:1194–1199

    CAS  PubMed  Google Scholar 

  131. 131.

    Privalova EI, Karjalainen E, Nurmi M, Maki-Arvela P, Eranen K, Tenhu H, Murzin DY, Mikkola JP (2013) Imidazolium-based poly(ionic liquid)s as new alternatives for CO2 capture. ChemSusChem 6:1500–1509

    CAS  PubMed  Google Scholar 

  132. 132.

    Wang J, Sng W, Yi G, Zhang Y (2015) Imidazolium salt-modified porous hypercrosslinked polymers for synergistic CO2 capture and conversion. Chem Commun 51:12076–12079

    CAS  Google Scholar 

  133. 133.

    Xiao S, Lu X, Lu Q (2007) Photosensitive polymer from ionic self-assembly of azobenzene dye and poly(ionic liquid) and its alignment characteristic toward liquid crystal molecules. Macromolecules 40:7944–7950

    CAS  Google Scholar 

  134. 134.

    Tudor A, Florea L, Gallagher S, Burns J, Diamond D (2016) Poly(ionic liquid) semi-interpenetrating network multi-responsive hydrogels. Sensors 16:219

    PubMed  Google Scholar 

  135. 135.

    Khorsand B, Lapointe G, Brett C, Oh JK (2013) Intracellular drug delivery nanocarriers of glutathione-responsive degradable block copolymers having pendant disulfide linkages. Biomacromolecules 14:2103–2111

  136. 136.

    Ganta S, Devalapally H, Shahiwala A, Amiji M (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 126:187–204

    CAS  PubMed  Google Scholar 

  137. 137.

    Meng F, Hennink WE, Zhong Z (2009) Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 30:2180–2198

    CAS  PubMed  Google Scholar 

  138. 138.

    Thambi T, Yoon HY, Kim K, Kwon IC, Yoo CK, Park JH (2011) Bioreducible block copolymers based on poly(ethylene glycol) and poly(γ-benzyl L-glutamate) for intracellular delivery of camptothecin. Bioconjug Chem 22:1924–1931

    CAS  PubMed  Google Scholar 

  139. 139.

    Sui X, Hempenius MA, Vancso GJ (2012) Redox-active cross-linkable poly(ionic liquid)s. J Am Chem Soc 134:4023–4025

    CAS  PubMed  Google Scholar 

  140. 140.

    Miao C, Li F, Zuo Y, Wang R, Xiong Y (2016) Novel redox-responsive Nanogels based on poly(ionic liquid)s for the triggered loading and release of cargos. RSC Adv 6:3013–3019

    CAS  Google Scholar 

  141. 141.

    Chen F, Guo J, Xu D, Yan F (2016) Thermo-and pH-responsive poly(ionic liquid) membranes. Polym Chem 7:1330–1336

    CAS  Google Scholar 

  142. 142.

    Li Y, Chen H, Liu D, Wang W, Liu Y, Zhou S (2015) pH-responsive shape memory poly(ethylene glycol)-poly(ε-caprolactone)-based polyurethane/cellulose nanocrystals nanocomposite. ACS Appl Mater Interfaces 7:12988–12999

    CAS  PubMed  Google Scholar 

  143. 143.

    Yuan C, Guo J, Yan F (2014) Shape memory poly(ionic liquid) gels controlled by host-guest interaction with β-Cyclodextrin. Polymer 55:3431–3435

    CAS  Google Scholar 

Download references

Acknowledgements

P.B. and M.A. thank DST, India for providing Inspire Fellowship. Thanks are also due to SERB, India for providing financial support. We thank Ms. Priyanka Dinda and Ms. Mahuya Kar for helpful discussion and support during the preparation of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tarun K. Mandal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Banerjee, P., Anas, M., Jana, S. et al. Recent developments in stimuli-responsive poly(ionic liquid)s. J Polym Res 27, 177 (2020). https://doi.org/10.1007/s10965-020-02091-8

Download citation

Keywords

  • Ionic liquid
  • Poly(ionic liquid)s
  • Stimuli-responsive
  • Thermoresponsive
  • pH-responsive
  • Photoresponsive
  • CO2-responsive
  • Redox-responsive