Superabsorbent polymer based on guar gum-graft-acrylamide: synthesis and characterization

Abstract

Superabsorbent polymers of guar gum -graft-acrylamide were synthesized using KPS as a free radical initiator in the presence of Tetra (ethylene glycol) diacrylate as a cross linker using solution graft copolymerization technique. The structures of the grafted copolymers GG-g-PAAm were characterized by FT-IR spectroscopy thermo gravimetric and SEM analysis. The effect of reaction parameters such as concentration of guar gum, acrylamide, KPS, crosslinker (TEGDA), and NaOH (neutralizing agent) were optimized to achieve a superabsorbent polymers with high swelling capacity of 80 g/g (deionisied water) and 22 g/g (0.8 wt% sodium chloride solution). The swelling kinetics of the synthesized superabsorbent were analyzed by applying the Fickian diffusion model and the Schott’s pseudo second order kinetics model, illuminating that chain leisure behavior during absorption had a great effect on whole absorbency.

This is a preview of subscription content, log in to check access.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Li X, He JZ, Hughes JM, Liu YR, Zheng YM (2014) Effects of super-absorbent polymers on a soil–wheat (Triticum aestivum L.) system in the field. Appl Soil Ecol 73:58–63

    Google Scholar 

  2. 2.

    Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: A review. Polym-Plast Technol Eng 50:1475–1486

    CAS  Google Scholar 

  3. 3.

    Cheng WM, Hu, XM, Wang DM, Liu G. H, (2015) Preparation and characteristics of corn straw-co-amps-co-aa superabsorbent hydrogel. Polymers, 7: 2431–2445

  4. 4.

    Calo E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267

    CAS  Google Scholar 

  5. 5.

    Zohuriaan-Mehr MJ, Omidian H, Doroudiani S, Kabiri K (2010) Advances in non-hygienic applications of superabsorbent hydrogel materials. J Mater Sci 45:5711–5735

    CAS  Google Scholar 

  6. 6.

    Justs J, Wyrzykowski M, Winnefeld F, Bajare D, Lura P (2014) Influence of superabsorbent polymers on hydration of cement pastes with low water-to-binder ratio. J Therm Anal Calorim 115:425–432

    CAS  Google Scholar 

  7. 7.

    Yang LX, Yang Y, Chen Z, Guo CX, Li SC (2014) Influence of super absorbent polymer on soil water retention, seed germination and plant survivals for rocky slopes eco-engineering. Ecol Eng 62:27–32

    Google Scholar 

  8. 8.

    Bakass M, Mokhlisse A, Lallemant M (2002) Absorption and desorption of liquid water by a superabsorbent polymer: effect of polymer in the drying of the soil and the quality of certain plants. J Appl Polym Sci 83:234–243

    CAS  Google Scholar 

  9. 9.

    Xu ST, Zhang L, McLaughlin NB, Mi JZ, Chen Q, Liu JH (2015) Effect of synthetic and natural water absorbing soil amendment soil physical properties under potato production in a semi-arid region. Soil Tillage Res 148:31–39

    Google Scholar 

  10. 10.

    Palacios-Romero A, Rodriguez-Laguna R, Razo-Zarate R, Meza-Rangel J, Prieto-Garcia F, Hernandez-Flores MD (2017) Survival of plants of pinus leiophylla schiede ex schltdl. & charm., by adding water reservoirs at transplanting in a greenhouse. Rev Chapingo Ser Cienc For Am 23:35–45

    Google Scholar 

  11. 11.

    Lejcus K, Dabrowska J, Grzybowska-Pietras J, Garlikowski D, Lejcus I, Pawlowski A, Spitalniak M (2016) Optimisation of operational parameters for nonwoven sheaths of water absorbing geo composites in unsaturated soil conditions. Fibres Text East Eur 24:110–116

    Google Scholar 

  12. 12.

    Song X, Zhu C, Fan D, Mi Y, Li X, Fu R, Duan Z, Wang Y, Feng R (2017) A novel human-like collagen hydrogel scaffold with porous structure and sponge-like properties. Polymers 9:638–654

    PubMed Central  Google Scholar 

  13. 13.

    Singh J, Dutta PK, Dutta J, Hunt AJ, Macquarrie DJ, Clark JH (2009) Preparation and properties of highly soluble chitosan–l-glutamic acid aerogel derivative. Carbohydr Polym 76(2):188–195

    CAS  Google Scholar 

  14. 14.

    Malik P, Srivastava M, Verma R, Kumar M, Kumar D, Singh J (2016) Nanostructured SnO2 encapsulated guar-gum hybrid nanocomposites for electrocatalytic determination of hydrazine mate. Sci Engin C 58:432–444

    CAS  Google Scholar 

  15. 15.

    Singh J, Dutta PK (2009) Preparation, circular dichroism induced helical conformation and optical property of chitosan acid salt complexes for biomedical applications. Intern J Biol Macrom 45(4):384–392

    CAS  Google Scholar 

  16. 16.

    Singh J, Dutta PK (2009) Spectroscopic and conformational study of chitosan acid salts. J Polym Res 16(3):231–238

    CAS  Google Scholar 

  17. 17.

    Zhang SF, He YF, Wang RM, Wu ZM, Song PF (2013) Preparation of emulsifier-free acrylate cross-linkable copolymer emulsion and application in coatings for controlling indoor humidity Iran. Polym J 22:447–456

    Google Scholar 

  18. 18.

    Guilherme MR, Aouada FA, Fajardo AR, Martins AF, Paulino AT, MFT D, Rubira AF, Muniz EC (2015) Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: a review. Eur Polym J 72:365–385

    CAS  Google Scholar 

  19. 19.

    Sung Y, Kim T-H, Lee B (2016) Syntheses of carboxymethylcellulose/graphene nanocomposite superabsorbent hydrogels with improved gel properties using electron beam radiation. Macromol Res 24:143–151

    CAS  Google Scholar 

  20. 20.

    Silveira JLM, Bresolin TMB (2011) Pharmaceutical use of galactomannans. Quim Nova 34(2):292–299

    CAS  Google Scholar 

  21. 21.

    Dodi G, Hritcu D, Popa MI (2011) Carboxymethylation of guar gum: synthesis and characterization. Cellul Chem Technol 45:171–176

    CAS  Google Scholar 

  22. 22.

    Srivastava A, Mishra V, Singh SK, Kumar R (2010) Vanadium (V)/mandelic acid initiated graft copolymerization of acrylamide onto guar gum in an aqueous medium. J Appl Polym Sci 115:2375–2385

    CAS  Google Scholar 

  23. 23.

    Kunj B, Jaya B, Arti S, Dinesh Kumar M (2005) Studies on graft copolymerization of N-vinyl formamide onto guar gum initiated by bromate/ascorbic acid redox pair. Ind J Chem Techn 12:664–670

    Google Scholar 

  24. 24.

    Song J, Yu R, Wang L, Zheng S, Li X (2011) Poly (N-vinylpyrrolidone)-grafted poly(N-isopropylacrylamide) copolymers: synthesis, characterization and rapid deswelling and reswelling behavior of hydrogels. Polymer 52:2340–2350

    CAS  Google Scholar 

  25. 25.

    Karadağ E, Kasim ZD, Kundakcı S, Üzüm ÖB (2017) Acrylamide/potassium 3-sulfopropyl methacrylate/sodium alginate/bentonite hybrid hydrogels: synthesis, characterization and its application in lauths violet removal from aqueous solutions. Fiber Polym 18(1):9–21

    Google Scholar 

  26. 26.

    Ibrahim MM, Flefel EM, El-Zawawy WK (2002) Cellulose membranes grafted with vinyl monomers in homogeneous system. J Appl Polym Sci 84:2629–2638

    CAS  Google Scholar 

  27. 27.

    Sutradhar SC, Khan MMR, Rahman MM, Dafadar NC (2015) The synthesis of superabsorbent polymers from a Carboxymethylcellulose/acrylic acid blend using gamma radiation and its application in agriculture. J Phys Sci 26:23–39

    CAS  Google Scholar 

  28. 28.

    Suo A, Qian J, Yao Y, Zhang W (2007) Synthesis and properties of carboxymethyl cellulose-graft-poly (acrylic acid-co-acrylamide) as a novel cellulose-based superabsorbent. J Appl Polym Sci 103:1382–1388

    CAS  Google Scholar 

  29. 29.

    Wang WB, Xu JX, Wang AQ (2011) A pH-, salt- and solvent-responsive carboxymethylcellulose-g-poly(sodium acrylate)/medical stone superabsorbent composite with enhanced swelling and responsive properties. Express Polym Lett 5:385–400

    CAS  Google Scholar 

  30. 30.

    Pourjavadi A, Ghasemzadeh H, Mojahedi F (2009) Swelling properties of CMC-g-poly (AAm-co-AMPS) superabsorbent hydrogel J. Appl Polym Sci 113:3442–3449

    CAS  Google Scholar 

  31. 31.

    Wang YZ, Shi XN, Wang WB, Wang AQ (2013) Synthesis, characterization, and swelling behaviors of a pH-responsive CMC-g-poly (AA-co-AMPS) superabsorbent hydrogel. Turk J Chem 37:149–159

    CAS  Google Scholar 

  32. 32.

    Liu S, Sun G (2008) Radical graft functional modification of cellulose with allyl monomers: chemistry and structure characterization. Carbohydr Polym 71:614–625

    CAS  Google Scholar 

  33. 33.

    Srivastava A, Mandal P, Kumar R (2016) Solid state thermal degradation behaviour of graft copolymers of carboxymethyl cellulose with vinyl monomers. Int J Biol Macromol 87:357–365

    CAS  PubMed  Google Scholar 

  34. 34.

    Samandari SS, Samandari SS, Heydaripour S, Abdouss M (2016) Novel carboxymethyl cellulose based nanocomposite membrane: synthesis, characterization and application in water treatment. J Environ Manag 166:457–465

    Google Scholar 

  35. 35.

    Lin Q, Gao M, Chang J, Ma H (2016) Adsorption properties of crosslinking carboxymethyl cellulose grafting dimethyl diallyl ammonium chloride for cationic and anionic dyes. Carbohydr Polym 151:283–294

    CAS  PubMed  Google Scholar 

  36. 36.

    Wang Z, Ning A, Xie P, Gao G, Xie L, Li X, Song A (2017) Synthesis and swelling behaviors of carboxymethyl cellulose-based superabsorbent resin hybridized with graphene oxide. Carbohydr Polym 157:48–56

    CAS  PubMed  Google Scholar 

  37. 37.

    Hong TT, Okabe H, Hidaka Y, Hara K (2017) Removal of metal ions from aqueous solutions using carboxymethyl cellulose/sodium styrene sulfonate gels prepared by radiation grafting. Carbohydr Polym 157:335–343

    Google Scholar 

  38. 38.

    Sand A, Kwark Y-J (2017) Modification of guar gum through grafting of acrylamide with potassium bromate/thiourea redox initiating system fiber. Polym. 18:675–681

    CAS  Google Scholar 

  39. 39.

    Bajpai UDN, Jain A (1993) A new technique for the study of the kinetics of adsorption of polymers onto surfaces. Polym Int 31(1):43–51

    Google Scholar 

  40. 40.

    He Z, Chen J, Keum JK, Szulczewski G, Li D (2014) Improving performance of TIPS pentacene-based organic thin film transistors with small-molecule additives. Orga Elect 15:150–155

    CAS  Google Scholar 

  41. 41.

    Chen J, Shao M, Xiao K, He Z, Li D, Lokitz BS, Hensley DK, Kilbey SM, Anthony JE, Keum JK, Rondinone AJ, Ya LW, Hong S, Bao Z (2013) Conjugated polymer-mediated polymorphism of a high performance, small-molecule organic semiconductor with tuned intermolecular interactions, enhanced long-range order, and charge transport. Chem Mater 25:4378–4386

    CAS  Google Scholar 

  42. 42.

    He Z, Li D, Hensley DK, Rondinone AJ, Chen J (2013) Switching phase separation mode by varying the hydrophobicity of polymer additives in solution-processed semiconducting small-molecule/polymer blends. Appl Phys Lett 103:113301–113305

    Google Scholar 

  43. 43.

    Gowrav MP, Umme H, Hosakote GS, Riyaz AMO, Srivastava A (2015) Polyacrylamide grafted guar gum based glimepiride loaded pH sensitive pellets for colon specific drug delivery: fabrication and characterization. RSC Adv 5:80005–80013

    CAS  Google Scholar 

  44. 44.

    Chattopadhyay A, (2015) Women workers in coffee industry of India Procee. Of the 2nd intern. Confe. On Social Sci 2: 5-14

  45. 45.

    Kim JH, Kim JS, Jang JH, Kim MS, Chang Y-W, Lim DY, Kim DH (2016) Compatibilizing effects of polypropylene-g-itaconic acid on the polypropylene composites. Fiber Polym 17:671–677

    CAS  Google Scholar 

  46. 46.

    Pourjavadi A, Tehrani ZM (2016) Mesoporous silica nanoparticles with bilayer coating of poly(acrylic acid-co-itaconic acid) and human serum albumin (HSA): a pH-sensitive carrier for gemcitabine delivery. Mater Sci Eng C 61:782–790

    CAS  Google Scholar 

  47. 47.

    Rzayev ZMO, Şimşek M, Bunyatova U, Salamov B (2016) Novel colloidal nanofiber semiconductor electrolytes from solution blends of PVA/ODA–MMT, poly (itaconic anhydride-alt-2-vinyl-1,3-dioxalan) and its Ag-carrying polymer complex by reactive electrospinning. Colloids Surf A Physicochem Eng Asp 492:26–37

    CAS  Google Scholar 

  48. 48.

    Brännström S, Malmström E, Johansson M (2017) Biobased UV-curable coatings based on itaconic acid. J Coat Technol Res 14:851–861

    Google Scholar 

  49. 49.

    B. E. Tate in “Advances in Polymer Science” (H.-J. Cantow, G. Dall’Asta, J. D. Ferry, W. Kern, G. Natta, S. Okamura, C. G. Overberger, W. Prints, G. V. Schultz, W. P. Slichter, A. J. Staverman, J. K. Stille, and H. A. Stuart, Eds.), 5: 214–232, Springer, New York, 1967

  50. 50.

    Pourjavadi A, Harzandi A, Hosseinzadeh H (2004) Modified carrageenan 3 synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. Eur Polym J 40:1363–1370

    CAS  Google Scholar 

  51. 51.

    Pourjavadi A, Hosseinzadeh H (2010) Synthesis and properties of partially hydrolyzed acrylonitrile-co-acrylamide superabsorbent. Hydrogel Bull Korean Chem Soc 31:3163–3172

    CAS  Google Scholar 

  52. 52.

    Isiklan N, Kursum F, Inal M (2010) Graft copolymerization of itaconic acid onto sodium alginate using benzoyl peroxide. Carbohydr Polym 79:665–672

    CAS  Google Scholar 

  53. 53.

    Dai H, Huang H (2017) Enhanced swelling and responsive properties of pineapple pee Carboxymethyl cellulose-g-poly(acrylic acid-co-acrylamide) superabsorbent hydrogel by the introduction of Carclazyte. J Agric Food Chem 65:565–574

    CAS  PubMed  Google Scholar 

  54. 54.

    Sugama T, Cook M (2000) Poly(itaconic acid)-modified chitosan coatings for mitigating corrosion of aluminum substrates. Prog Org Coat 38:79–87

    CAS  Google Scholar 

  55. 55.

    Zhang J, Wang L, Wang A (2006) Preparation and swelling behavior of fast-swelling superabsorbent hydrogels based on starch-g-poly (acrylic acid-co-sodium acrylate). Macromol Mater Eng 291:612–620

    CAS  Google Scholar 

  56. 56.

    Dai H, Huang H (2017) Enhanced swelling and responsive properties of pineapple Peel Carboxymethyl cellulose-g-poly(acrylic acid-co-acrylamide) superabsorbent hydrogel by the introduction of Carclazyte. J Agric Food Chem 65:565–574

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arpit Sand.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sand, A., Vyas, A. Superabsorbent polymer based on guar gum-graft-acrylamide: synthesis and characterization. J Polym Res 27, 43 (2020). https://doi.org/10.1007/s10965-019-1951-x

Download citation

Keywords

  • Superabsorbent polymer
  • Guar gum
  • Acrylamide
  • Swelling kinetics