Skip to main content
Log in

Preparation of covalently bonded polyaniline nanofibers/carbon nanotubes supercapacitor electrode materials using interfacial polymerization approach

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this paper, the covalently bonded polyaniline (PANI) nanofiber/multi-walled carbon nanotubes (MWCNT) composites were synthesized via interfacial polymerization of aniline with para-phenylenediamine functionalized MWCNT at the interface of oil/water system. Owing to the diffusion-controlled growth process of PANI, PANI with uniform fiber structure were obtained. The morphology analysis showed that the diameter of PANI nanofiber decreased with the increasing of MWCNT loading amount. Impedance analysis showed that the charge-transfer resistances of the composites were reduced also with the increasing of MWCNT loading amount. The decreasing of charge-transfer resistances and change of morphology resulted in enhanced capacitive properties. Electrochemical tests showed that the specific capacitance of PANI, PANI/MWCNT-10% and PANI/MWCNT-20% were 405, 641 and 764 F·g-1, respectively. As comparison with pure PANI nanofiber, the specific capacitance of the composites increased by 58% and 88.6%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bogue R (2013) Powering tomorrow's sensor: a review of technologies – Part 1. Sens. Rev. 30:271–275

    Article  Google Scholar 

  2. Vangari M, Pryor T, Jiang L (2013) Supercapacitors: Review of Materials and Fabrication Methods. Journal of Energy Engineering 139:72–79

    Article  Google Scholar 

  3. Kandasamy SK, Kandasamy K (2018) Recent Advances in Electrochemical Performances of Graphene Composite (Graphene-Polyaniline/Polypyrrole/Activated Carbon/Carbon Nanotube) Electrode Materials for Supercapacitor: A Review. Journal of Inorganic & Organometallic Polymers & Materials:1–26

  4. Salunkhe RR, Lin J, Malgras V et al (2015) Large-scale synthesis of coaxial carbon nanotube/Ni (OH)2 composites for asymmetric supercapacitor application. Nano Energy 11:211–218

    Article  CAS  Google Scholar 

  5. Tang J, Salunkhe RR, Liu J et al (2015) Thermal Conversion of Core–Shell Metal–Organic Frameworks: A New Method for Selectively Functionalized Nanoporous Hybrid Carbon. J. Am. Chem. Soc. 137:1572

    Article  CAS  Google Scholar 

  6. Salunkhe RR, Tang J, Kamachi Y et al (2015) Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal–Organic Framework. Acs Nano 9:6288–6296

    Article  CAS  Google Scholar 

  7. Wang Y, Guo J, Wang T et al (2015) Mesoporous Transition Metal Oxides for Supercapacitors. Nanomaterials 5:1667–1689

    Article  CAS  Google Scholar 

  8. Meng Q, Cai K, Chen Y et al (2017) Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36

    Article  CAS  Google Scholar 

  9. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196:1–12

    Article  CAS  Google Scholar 

  10. Bélanger D, Ren X, Davey J et al (2000) Characterization and Long-Term Performance of Polyaniline-Based Electrochemical Capacitors. J. Electrochem. Soc. 147:2923–2929

    Article  Google Scholar 

  11. Xiong S, Yang F, Jiang H et al (2012) Covalently bonded polyaniline/fullerene hybrids with coral-like morphology for high-performance supercapacitor. Electrochim. Acta 85:235–242

    Article  CAS  Google Scholar 

  12. Xiong S, Shi Y, Jia C et al (2014) Preparation of High-performance Covalently Bonded Polyaniline Nanorods/Graphene Supercapacitor Electrode Materials using Interfacial Copolymerization Approach. Electrochim. Acta 127:139–145

    Article  CAS  Google Scholar 

  13. Zhang X, Meng X, Wang Q et al (2018) Preparation and electrochemical investigation of polyaniline nanowires for high performance supercapacitor. Mater. Lett. 217:312–315

    Article  CAS  Google Scholar 

  14. Pang S, Chen W, Yang Z et al (2017) Facile Synthesis of Polyaniline Nanotubes with Square Capillary Using Urea as Template. Polymers 9:510

    Article  Google Scholar 

  15. Zhou SX, Tao XY, Ma J et al (2017) Facile synthesis of self-assembled polyaniline nanorods doped with sulphuric acid for high-performance supercapacitors. Vacuum 143

  16. Roy A, Ray A, Saha S et al (2018) Investigation on energy storage and conversion properties of multifunctional PANI-MWCNT composite. Int. J. Hydrogen Energy 43

    Article  CAS  Google Scholar 

  17. Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950

    Article  CAS  Google Scholar 

  18. He X, Liu G, Yan B et al (2016) Significant enhancement of electrochemical behaviour by incorporation of carboxyl group functionalized carbon nanotubes into polyaniline based supercapacitor. Eur. Polym. J. 83:53–59

    Article  CAS  Google Scholar 

  19. Otrokhov G, Pankratov D, Shumakovich G et al (2014) Enzymatic synthesis of polyaniline/multi-walled carbon nanotube composite with core shell structure and its electrochemical characterization for supercapacitor application. Electrochim. Acta 123:151–157

    Article  CAS  Google Scholar 

  20. Male U, Bo KS, Huh DS (2017) Synthesis and characterization of polyaniline-grafted CNT as electrode materials for supercapacitors. Macromolecular Research 25:1–8

    Article  Google Scholar 

  21. Du P, Lin L, Wang H et al (2017) Fabrication of porous polyaniline modified MWNTs core-shell structure for high performance supercapacitors with high rate capability. Materials & Design 127:76–83

    Article  CAS  Google Scholar 

  22. Ramana GV, Srikanth VVSS, Padya B et al (2014) Carbon nanotube–polyaniline nanotube core–shell structures for electrochemical applications. Eur. Polym. J. 57:137–142

    Article  CAS  Google Scholar 

  23. Xiong S, Wei J, Jia P et al (2011) Water-processable polyaniline with covalently bonded single-walled carbon nanotubes: enhanced electrochromic properties and impedance analysis. Acs Applied Materials & Interfaces 3:782

    Article  CAS  Google Scholar 

  24. Xiong S, Yang F, Ding G et al (2012) Covalent bonding of polyaniline on fullerene: Enhanced electrical, ionic conductivities and electrochromic performances. Electrochim. Acta 67:194–200

    Article  CAS  Google Scholar 

  25. Peikertová P, Kulhánková L, Neuwirthová L et al (2016) Raman study of PANI thin film during long time period in dependence on storage conditions. Chemical Papers 71:379–385. https://doi.org/10.1007/s11696-016-0078-3

    Article  CAS  Google Scholar 

  26. Liu MC, Kong LB, Lu C et al (2012) Waste paper based activated carbon monolith as electrode materials for high performance electric double-layer capacitors. RSC Adv. 2:1890–1896

    Article  CAS  Google Scholar 

  27. Lin K-M, Chang K-H, Hu C-C et al (2009) Mesoporous RuO2 for the next generation supercapacitors with an ultrahigh power density. Electrochim. Acta 54:4574–4581. https://doi.org/10.1016/j.electacta.2009.03.058

    Article  CAS  Google Scholar 

  28. Chang WM, Wang CC, Chen CY (2016) Plasma-Induced Polyaniline Grafted on Carbon Nanotube-embedded Carbon Nanofibers for High-Performance Supercapacitors. Electrochim. Acta 212:130–140. https://doi.org/10.1016/j.electacta.2016.06.159

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Opening Project of Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization (HZXYKFKT201804) and Natural Science Foundation of Shaanxi Province, China (2018JM5027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanxin Xiong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, S., Zhang, X., Wang, R. et al. Preparation of covalently bonded polyaniline nanofibers/carbon nanotubes supercapacitor electrode materials using interfacial polymerization approach. J Polym Res 26, 90 (2019). https://doi.org/10.1007/s10965-019-1749-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1749-x

Keywords

Navigation