Skip to main content
Log in

Biobased furano-pyridinic copolyamide-imides preparation, characterization and degradation study

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Novel copolyamide-imides containing furan moieties were prepared from the resulting furanic dihydrazides and pyridinic dihydrazides monomers with various aromatic dianhydrides. Their copolymers were prepared by applying a one sept melt polycondensation method at high temperature. The inherent viscosities of these copolymers are in the range 0.024–0.064 L/g. The copolyimide-imides furano-pyridinic are amorphous with Tg ranging from 95 to 152 °C and their thermal and hydrolysis stabilities are influenced by the presence of the pyridinic function. These copolymers having a good stability in the H2O2/CoCl2 medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7.

Similar content being viewed by others

Data availability

The figures and schemes used to support the findings of this study are included within the article.

References

  1. Liaw D, Hsu P, Chen W, Lin S (2002) High glass transitions of new polyamides, polyimides, and poly(amide-imide)s containing a Triphenylamine group: synthesis and characterization. Macromolecules 35:4669–4676

    Article  CAS  Google Scholar 

  2. Li P, He F, Yang Z, Yang W, Yao J (2018) The degradability and thermal properties of chiral polyamide-imides synthesized from several L-amino acids: side group effects. Polym Degrad Stab 147:267–273

    Article  CAS  Google Scholar 

  3. Faghihi K, Pournajaf J, Hajibeygi M (2014) Preparation and characterization of new poly(amide–imide)reinforced layer silicate nanocomposite containing N,N’-pyrromellitoyl-bis-L-phenyl acetic acid. J Saudi Chem Soc 18:993–999

    Article  Google Scholar 

  4. Robertson GP, Guiver MD, Yoshikawa M, Brownstien S (2004) Structural determination of Torlon 4000T polyamide–imide by NMR spectroscopy. Polymer. 45:1111–1117

    Article  CAS  Google Scholar 

  5. Kosuri MR, Koros WJ (2008) Defect-free asymmetric hollow fiber membranes from Torlon®, a polyamide–imide polymer, for high-pressure CO2 separations. J Membr Sci 320:65–72

    Article  CAS  Google Scholar 

  6. Choi NS, yew KH, Choi WU, Kim SS (2008) Enhanced electrochemical properties of a Si-based anode using an electrochemically active polyamide imide binder. J Power Sources 177:590–594

    Article  CAS  Google Scholar 

  7. Zhang Y, Liu J, Wu X, Hongsheng B, Jiang G, Zhi X, Qi L, Zhang X (2019) Synthesis and characterization of thianthrene-containing preimidized soluble polyimide resins and the derived films with high refractive indices and good optical transparency. J Polym Res 26:2

    Article  Google Scholar 

  8. Mansourpanah Y, Ostadchinigar A (2017) Preparation of chemically attached polyamide thin film membrane using different diamines: separation and computational investigation. J Polym Res 24:26

    Article  Google Scholar 

  9. Li FY, Li Y, Chung TS, Chen H, Jean YC, Kawi S (2011) Development and positron annihilation spectroscopy (PAS) (2011) characterization of polyamide imide (PAI)–polyethersulfone (PES) based defect-free dual-layer hollow fiber membranes with an ultrathin dense-selective layer for gas separation. J Membr Sci 378:541–550

    Article  CAS  Google Scholar 

  10. Yoshikawa M, Higuchi A, Ishikawa M, Guiver MD, Robertson GP (2004) Vapor permeation of aqueous 2-propanol solutions through gelatin/Torlon® poly(amide imide) blended membranes. J Membr Sci 243:89–95

    Article  CAS  Google Scholar 

  11. Setiawan L, Wang R, Li K, Fane AG (2011) Fabrication of novel poly(amide–imide) forward osmosis hollow fiber membranes with a positively charged nanofiltration-like selective layer. J Membr Sci 369:196–205

    Article  CAS  Google Scholar 

  12. Sun SP, Wang KY, Peng N, Hatton TA, Chung T-S (2010) Novel polyamide-imide/cellulose acetate dual-layer hollow fiber membranes for nanofiltration. J Membr Sci 363:232–242

    Article  CAS  Google Scholar 

  13. Sun SP, Wang KY, Rajarathnam D, Hatton TA, Chung TS (2010) Polyamide-imide nanofiltration hollow Fiber membranes with elongation-induced nano-pore evolution. Journal 56:1481–1494

    CAS  Google Scholar 

  14. Lin HL, Juang TY, Chan LH, Lee RH, Dai SA, Liu YL, Su WC, Jeng RJ (2011) Sequential self repetitive reaction toward wholly aromatic polyimides with highly stable optical nonlinearity. Polym Chem 2:685–693

    Article  CAS  Google Scholar 

  15. Lin HL, Chang HL, Juang TY, Lee RH, Dai SA, Liu YL, Jeng RJ (2009) Nonlinear optical, poly(amide-imide)–clay nanocomposites comprising an azobenzene moiety synthesised via sequential self-repetitive reaction. Dyes Pigments 82:76–83

    Article  CAS  Google Scholar 

  16. Lin HL, Chao TY, Shih YF, Dai SA, Su WC, Jeng RJ (2008) Stable second-order nonlinear optical poly(amide–imide)/inorganic materials via simultaneous sequential self-repetitive reaction and sol–gel process. Polym Adv Technol 19:984–992

    Article  CAS  Google Scholar 

  17. Mallakpour S, Khadem E (2014) Reinforcement of poly(amide–imide) containing N-trimellitylimido L-phenyl alanine by using nano α Al2O3 surface-coupled with bromo-flame retardant under ultrasonic irradiation technique. J Mol Struct 1075:196–203

    Article  CAS  Google Scholar 

  18. Mallakpour S, Dinari M (2013) Facile synthesis of nanocomposite materials by intercalating an optically activepoly(amide-imide) enclosing (L)-isoleucine moieties and azobenzene side groups into a chiral layered double hydroxide. Polymer 54:2907–2916

    Article  CAS  Google Scholar 

  19. Buch PR, Mohan DJ, Reddy AVR (2006) Poly(amide imide)s and poly(amide imide) composite membranes by interfacial polymerization. Polym Int 55:391–398

    Article  CAS  Google Scholar 

  20. Faghihi K, Soleimani M, Shabanian M (2011) Preparation of new series of poly(amide-imide) reinforced layer silicate nanocomposite containing N-Trimellitimide-L-Alanine. J Mex Chem Soc 55:198–203

    CAS  Google Scholar 

  21. Park YW, Lee DS, Kim SH (2004) Mechanical, surface, and thermal properties of polyamide imide–polydimethylsiloxane nanocomposites fabricated by sol–gel process. J Appl Polym Sci 91:1774–1783

    Article  CAS  Google Scholar 

  22. Babooram K, Francis B, Bissessur R, Narain R (2008) Synthesis and characterization of novel (amide–imide)-silica composites by the sol–gel process. Compos Sci Technol 68:617–624

    Article  CAS  Google Scholar 

  23. Duta M, Predoana L, Calderon-Moreno JM, Preda S, Anastasescu M, Marin A, Dascalu I, Chesler P, Hornoiu C, Zaharescu M, Osiceanu P, Gartner M (2016) Nb-doped TiO2 sol–gel films for CO sensing applications. Mater Sci Semicond Process 42:397–404

    Article  CAS  Google Scholar 

  24. Dou W, Wang P, Zhang D, Yu J (2016) An efficient way to prepare hydrophobic antireflective SiO2 film by sol-gel method. Mater Lett 167:69–72

    Article  CAS  Google Scholar 

  25. Mallakpour S, Dinari M, Neamani S (2015) A facile and green method for the production of novel and potentiallybiocompatiblepoly(amide-imide)/ZrO2–poly(vinyl-alcohol) nanocomposites containing trimellitylimido-l-leucine linkages. Prog Org Coat 86:11–17

    Article  CAS  Google Scholar 

  26. Mallakpour S, Zadehnazari A (2013) The production of functionalized multiwall carbon nanotube/amino acid-based poly(amide–imide) composites containing a pendant dopamine moiety. Carbon 56:27–37

    Article  CAS  Google Scholar 

  27. Mallakpour S, Zadehnazari A (2016) Synthesis, morphology investigation and thermal mechanical propertiesof dopamine-functionalized multi-walled carbon nanotube/ poly(amide-imide) composites. React Funct Polym 106:112–119

    Article  CAS  Google Scholar 

  28. Park SJ, Rhee KY, Jin FL (2015) Improvement of hydrophilic properties of electrospun polyamide- imide fibrous mats by atmospheric-pressure plasma treatment. J Phys Chem Solids 78:53–58

    Article  CAS  Google Scholar 

  29. Dutczak SM, Cuperus FP, Wessling M, Stamatialis DF (2013) New crosslinking method of polyamide–imide membranes for potential application in harsh polar aprotic solvents. Sep Purif Technol 102:142–146

    Article  CAS  Google Scholar 

  30. Wang Y, Chung TS, Wang H (2011) Polyamide–imide membranes with surface immobilized cyclodextrin for butanol isomer separation via pervaporation. AICHE J 57:1470–1484

    Article  CAS  Google Scholar 

  31. Maktouf L, Ghorbel I, Afli A, Abid S, Gandini A (2010) Polyimides based on furanic diamines and aromaticdianhydrides: synthesis, characterization and properties. Polym Bull 67:1111–1122

    Article  Google Scholar 

  32. Abid S, El Gharbi R, Gandini A (2004) Polyamide-imides bearing furan moieties. 1. Solution polycondensation ofaromatic dianhydrydes with 2-furoic acid dihydrazides. Polymer. 45:6469–6478

    Article  CAS  Google Scholar 

  33. Baba Y, Hirakawa H (1992) Selective adsorption of palladium(II), platinum(IV), and mercury (II) on a new chitosan derivative possessing pyridyl group. Chem Lett 21:1905–1908

    Article  Google Scholar 

  34. Rodrigues CA, Laranjeira MCM, de Fávere VT, Stadler E (1998) Interaction of Cu(ll) on N-(2 pyridylmethyl) and N-(4-pyridylmethyl) chitosan. Polymer. 39:5121–5126

    Article  CAS  Google Scholar 

  35. Sajomsang W, Tantayanon S, Tangpasuthadol V, Daly WH (2008) Synthesis of methylated chitosan containing aromatic moieties: Chemoselectivity and effect on molecular weight. Carbohydr Polym 72:740–750

    Article  CAS  Google Scholar 

  36. Opanasopit P, Sajomsang W, Ruktanonchai U, Mayen V, Rojanarata T (2008) Methylated N-(4-pyridinylmethyl) chitosan as a novel effective safe gene carrier. Int J Pharm 364:127–134

    Article  CAS  Google Scholar 

  37. Bao S, Nomura T (2002) Methylated N-(4-pyridinylmethyl) chitosan as a novel effective safe gene carrier. Anal Sci 18:881–885

    Article  CAS  Google Scholar 

  38. Kumar S, Dutta J, Dutta PK (2009) Preparation and characterization of N-heterocyclic chitosan derivative based gels for biomedical applications. Int J Biol Macromol 45:330–337

    Article  CAS  Google Scholar 

  39. Sajomsang W, Rungsardthong U, Ruktanonchai, Gonil P, Nuchuchua O (2009) Mucoadhesive property and biocompatibility of methylated N-aryl chitosan derivatives. Carbohydr Polym 78:945–952

    Article  CAS  Google Scholar 

  40. Chan-Chan LH, Solis-Correa R, Vargas-Coronado RF, Cervantes-Uc JM, Rodríguez JV, Quintana P, Bartolo-Pérez P (2010) Degradation studies on segmented polyurethanes prepared with HMDI, PCL and different chain extenders. Acta Biomater 6:2035–2044

    Article  CAS  Google Scholar 

  41. Gandini A, Belgacem MN (1997) Furans in polymer chemistry. Prog Polym Sci 22:1203–1379

    Article  CAS  Google Scholar 

  42. Gharbi S, Andreolety JP, Gandini A (2000) Polyesters bearing furan moieties IV. Solution and interfacial polycondensation of 2,2′- bis(5-chloroformyl-2-furyl) propane with various diols and bisphenols. Eur Polymer 36:463–472

    Article  CAS  Google Scholar 

  43. Abid M, El Gharbi R, Gandini A (2000) Polyamides incorporating furan moieties 3. Polycondensation of 2-furamide with paraformaldehyde. Polymer 41:3555–3560

    Article  CAS  Google Scholar 

  44. Afli A, Gharbi S, El Gharbi R, Le Bigot Y, Gandini A (2002) A preliminary study on polyhydrazides incorporating furan moieties. Eur Polymer 38:667

    Article  CAS  Google Scholar 

  45. Bougarech A, Abid M, Abid S, Fleury E (2016) Synthesis, characterization and thermal, hydrolytic and oxidative degradation study of biobased (BisFuranic-Pyridinic) copolyesters. Polym Degrad Stab 133:283–292

    Article  CAS  Google Scholar 

  46. Feng Y, Li C (2006) Study on oxidative degradation behaviors of polyesterurethane network. Polym Degrad Stab 91:1711–1716

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Ministry of Higher Education and Scientific Research in Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majdi Abid.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaddour, M., Bougarech, A., Abid, M. et al. Biobased furano-pyridinic copolyamide-imides preparation, characterization and degradation study. J Polym Res 26, 74 (2019). https://doi.org/10.1007/s10965-019-1739-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1739-z

Keywords

Navigation