Skip to main content
Log in

Diblock and triblock copolymers catalyzed by benzo-12-crown-4 bridged N-heterocyclic carbene: synthesis, characterization and degradation behavior

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The sequential ring-opening polymerizations (ROP) of ε-caprolactone (ε-CL) and L-lactide (LLA) with benzo-12-crown-4-imidazole carbene (B-12-C-4imY) as the catalyst have been performed. Using either benzyl alcohol or ethylene glycol as an initiator, the corresponding poly(ε-caprolactone)-poly(L-lactide) (PCL-b-PLLA) diblock or poly(L-lactide)-poly(ε-caprolactone)-poly(L-lactide) (PLLA-PCL-PLLA) triblock copolymers were easily prepared. The results indicated that B-12-C-4imY was quite effective for the copolymerization. The diblock copolymerization of ε-CL with LLA could only be achieved when ε-CL was first polymerized followed by LLA. Feeding the two monomers simultaneously, however, only resulted in the formation of LLA homopolymers. Thermogravimetric analysis (TGA) measurements demonstrated that block copolymers exhibited the decomposition temperature lower than the PCL homopolymer. The copolymers were characterized by 1H NMR and 13C NMR, FT-IR, GPC, and DSC analyses. 20 × 10 mm2 rectangular specimens made of the triblock copolymer were allowed to degrade in a pH = 7.4 phosphate buffer at 37 °C. Degradation was monitored by various analytical techniques such as GPC, IR, and ESEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang F, Bronich TK, Kabanov AV, Rauh RD, Roovers J (2005) Synthesis and evaluation of a star amphiphilic block copolymer from poly(ε-caprolactone) and poly(ethylene glycol) as a potential drug delivery carrier. Bioconjug Chem 16:397–405

    Article  CAS  PubMed  Google Scholar 

  2. Ho MH, Hou LT, Tu CY, Hsieh HJ, Lai JY, Chen WJ, Wang DM (2006) Promotion of cell affinity of porous PLLA scaffolds by immobilization of RGD peptides via plasma treatment. Macromol Biosci 6:90–98

    Article  CAS  PubMed  Google Scholar 

  3. Meng FL, Zheng SX, Zhang WA, Li HQ, Liang Q (2006) Nanostructured thermosetting blends of epoxy resin and amphiphilic poly(ε-caprolactone)-block-polybutadiene-block-poly(ε-caprolactone) triblock copolymer. Macromolecules 39:711–719

    Article  CAS  Google Scholar 

  4. Wang CH, Hsiue GH (2005) Polymer-DNA hybrid nanoparticles based on folate-polyethylenimine-block-poly(L-lactide). Bioconjug Chem 16:391–396

    Article  CAS  PubMed  Google Scholar 

  5. Albertsson AC, Varma IK (2003) Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 4:1466–1486

    Article  CAS  PubMed  Google Scholar 

  6. Arbaoui A, Redshaw C (2010) Metal catalysts for ε-caprolactone polymerization. Polym Chem 1:801–826

    Article  CAS  Google Scholar 

  7. Dijkstra PJ, Du HZ, Feijen J (2011) Single site catalysts for stereoselective ring-opening polymerization of lactides. Polym Chem 2:520–527

    Article  CAS  Google Scholar 

  8. Pitt CG, Marks TA, Schindler A (1980) Biodegradable drug delivery systems based on aliphatic polyesters: application to contraceptives and narcotic antagonists. In: Baker R (ed) Controlled release of bioactive materials. Academic Press, New York

    Google Scholar 

  9. Riess C, Hurtrez C, Bahadur P (1985) Block copolymers. Encyclopedia of polymer science and engineering 2nd edn. Wiley, New York

  10. Wilson JA, Hopkins SA, Wright PM, Dove AP (2015) Synthesis of ω-pentadecalactone copolymers with independently tunable thermal and degradation behavior. Macromolecules 48:950–958

    Article  CAS  Google Scholar 

  11. Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Controlled ring-opening polymerization of lactide and glycolide. Chem Rev 104:6147–6176

    Article  CAS  PubMed  Google Scholar 

  12. Bouyahyi M, Duchateau R (2014) Metal-based catalysts for controlled ring-opening polymerization of macrolactones: high molecular weight and well-defined copolymer architectures. Macromolecules 47:517–524

    Article  CAS  Google Scholar 

  13. Pérez Y, del Hierro I, Zazo L, Fernández-Galán R, Fajardo M (2015) The catalytic performance of metal complexes immobilized on SBA-15 in the ring opening polymerization of ε-caprolactone with different metals (Ti, Al, Zn and mg) and immobilization procedures. Dalton Trans 44:4088–4101

    Article  PubMed  Google Scholar 

  14. Gilmour DJ, Webster RL, Perry MR, Schafer LL (2015) Titanium pyridonates for the homo- and copolymerization of rac-lactide and ε-caprolactone. Dalton Trans 44:12411–12419

    Article  CAS  PubMed  Google Scholar 

  15. Platel RH, Hodgson LM, Williams CK (2008) Biocompatible initiators for lactide polymerization. Polym Rev 48:11–63

    Article  CAS  Google Scholar 

  16. Penczek S, Cypryk M, Duda A, Kubisa P, Slomkowski S (2007) Living ring-opening polymerizations of heterocyclic monomers. Prog Polym Sci 32:247–282

    Article  CAS  Google Scholar 

  17. Gupta AP, Kumar V (2007) New emerging trends in synthetic biodegradable polymers-polylactide: a critique. Eur Polym J 43:4053–4074

    Article  CAS  Google Scholar 

  18. Kamber NE, Jeong W, Waymouth RM, Pratt RC, Lohmeijer BGG, Hedrick JL (2007) Organocatalytic ring-opening polymerization. Chem Rev 107:5813–5840

    Article  CAS  PubMed  Google Scholar 

  19. Ottou WN, Sardon H, Mecerreyes D, Vignolle J, Taton D (2016) Update and challenges in organo-mediated polymerization reactions. Prog Polym Sci 56:64–115

    Article  CAS  Google Scholar 

  20. Guillerm B, Lemaur V, Ernould B, Cornil J, Lazzaroni R, Gohy J-F, Dubois P, Coulembier O (2014) A one-pot two-step efficient metal-free process for the generation of PEO-b-PCL-b-PLA amphiphilic triblock copolymers. RSC Adv 4:10028–10038

    Article  CAS  Google Scholar 

  21. Makiguchi K, Kikuchi S, Yanai K, Ogasawara Y, Sato S, Satoh T, Kakuchi T (2014) Diphenyl phosphate/4-dimethylaminopyridine as an efficient binary organocatalyst system for controlled/living ring-opening polymerization of L-lacitde leading to diblock and end-functionalized poly(L-lactide)s. J Polym Sci, Part A: Polym Chem 52:1047–1054

    Article  CAS  Google Scholar 

  22. Wang X, Liu JQ, Xu SQ, Xu JX, Pan XF, Liu JJ, Cui SD, Li ZJ, Guo K (2016) Tranceless switch organocatalysis enables multiblock ring-opening copolymerizations of lactones, carbonates, and lactides: by a one plus one approach in one pot. Polym Chem 7:6297–6308

    Article  CAS  Google Scholar 

  23. Dove AP, Pratt RC, Lohmeijer BGG, Culkin DA, Hagberg EC, Nyce GW, Waymouth RM, Hedrick JL (2006) N-heterocyclic carbenes: effective organic catalysts for living polymerization. Polymer 47:4018–4025

    Article  CAS  Google Scholar 

  24. Xiao XD, Bai YL, Liu JQ, Wang JW (2016) Synthesis of novel pillar[5]arene-based N-heterocyclic carbene ligands for Pd-catalysed heck reactions. Tetrahedron Lett 57:3385–3388

    Article  CAS  Google Scholar 

  25. Coulembier O, Mespouille L, Hedrick JL, Waymouth RM, Dubois P (2006) Metal-free catalyzed ring-opening polymerization of β-lactones: synthesis of amphiphilic triblock copolymers based on poly(dimethylmalic acid). Macromolecules 39:4001–4008

    Article  CAS  Google Scholar 

  26. Raynaud J, Absalon C, Gnanou Y, Taton D (2009) N-heterocyclic carbene-induced zwitterionic ring-opening polymerization of ethylene oxide and direct synthesis of α, ω-difunctionalized poly(ethylene oxide)s and poly(ethylene oxide)-b-poly(ε-caprolactone) block copolymers. J Am Soc 131:3201–3209

  27. Nyce GW, Glauser T, Connor EF, Mock A, Waymouth RM, Hedrick JL (2003) In situ generation of carbenes: a general and versatile platform for organocatalytic living polymerization. J Am Chem Soc 125:3046–3056

    Article  CAS  PubMed  Google Scholar 

  28. Zhang LF, Li N, Wang Y, Guo JZ, Li JF (2014) Ring-opening block copolymerization of ε-caprolactone with L-lactide catalyzed by N-heterocyclic carbenes: synthesis, characteristics, mechanism. Macromol Res 22:600–605

    Article  CAS  Google Scholar 

  29. Kamber NE, Jeong W, Gonzalez S, Hedrick JL, Waymouth RM (2009) N-heterocyclic carbene for the organocatalytic ring-opening polymerization of ε-caprolactone. Macromolecules 42:1634–1639

    Article  CAS  Google Scholar 

  30. Bai JH, Wu N, Wang Y, Li QR, Wang XQ, Zhang LF (2016) Triblock and pentablock copolymerizations of ε-caprolactone with L-lactide catalyzed by N-heterocyclic carbene. RSC Adv 6:108045–108050

    Article  CAS  Google Scholar 

  31. Coulembier O, Lohmeijer BGG, Dove AP, Pratt RC, Mespouille L, Culkin DA, Benight SJ, Dubois P, Waymouth RM, Hedrick JL (2006) Alcohol adducts of N-heterocyclic carbenes: latent catalysts for the thermally-controlled living polymerization of cyclic esters. Macromolecules 39:5617–5628

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Research Project of Shanxi Province of China (No.2015011029), Undergraduate Innovative Experiment Program of Shanxi Normal University (No.SD2014CXXM-36) and Shanxi Province Education Innovation Project for Postgraduate (No.2015BY38).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wu, N., Bai, J. et al. Diblock and triblock copolymers catalyzed by benzo-12-crown-4 bridged N-heterocyclic carbene: synthesis, characterization and degradation behavior. J Polym Res 25, 254 (2018). https://doi.org/10.1007/s10965-018-1639-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1639-7

Keywords

Navigation