Synthesis and properties of novel organosoluble copoly(arylene ether nitriles) containing thioether moiety

  • Zejun Pu
  • Linqing Hu
  • Yuhan Tian
  • Xiaoyi Zheng
  • Jiachun Zhong
  • Xiaobo Liu


In this work, a series of novel organosoluble copoly(arylene ether nitriles) containing thioether moiety (PENS) were synthesized via nucleophilic aromatic substitution polymerization of 2,6-dichlorobenzonitrile with bisphenol A and sodium sulfide nonahydrate, using N-Methyl-2-Pyrrolidone as solvent in the presence of anhydrous potassium carbonate. The chemical structures of PENS were characterized by FTIR and 1H NMR. The derived copolymers showed high glass transition temperatures in the range of 167–178 °C and excellent thermal stability with the 5% weight loss temperatures ranging from 465 °C to 503 °C. Meanwhile, all of the PENS were amorphous and can be readily cast into transparent films with a tensile strength exceeding 77 MPa and a breaking elongation over 4.8%.In addition, the dielectric constant of all the PENS copolymers showed weak frequency dependence, the dielectric loss showed slight decrease with increasing frequency over the range of 100 Hz to 200 kHz. Therefore, this kind of organosoluble copoly(arylene ether nitriles) containing thioether moiety could be a good candidate as matrix resins for high-performance polymeric materials.


Poly(arylene ether nitriles) Copolymers Thermal properties Mechanical properties Dielectric properties 



The authors wish to thank for the Sichuan University of Science and Engineering Talent Introduction Project (No.2016RCL35, No. 2015RC56), Material Corrosion and Protection Key Laboratory of Sichuan Province Open Fund Projects (2016CL16) and Key Science and Technology Planning Project of Zigong City (2017XC04).


  1. 1.
    Yano K, Usuki A, Okada A (1997) Synthesis and properties of polyimide-clay hybrid films. J Polym Sci: Polym Chem 35:2289–2294CrossRefGoogle Scholar
  2. 2.
    Wang N, Chen Y, Ren JY, Huang XY, Chen XY, Li GD, Liu DQ (2017) Electrically conductive polyaniline/polyimide microfiber membrane prepared via a combination of solution blowing and subsequent in situ polymerization growth. J Polym Res 24:42CrossRefGoogle Scholar
  3. 3.
    Geng Z, Yang X, Boo C, Zhu SY, Lu Y, Fan W, Huo MX, Elimelech M, Yang X (2017) Self-cleaning anti-fouling hybrid ultrafiltration membranes via side chain grafting of poly(aryl ether sulfone) and titanium dioxide. J Membr Sci 529:1–10CrossRefGoogle Scholar
  4. 4.
    Zhang K, Zhang G, Liu BY, Wang XJ, Long SR, Yang J (2014) Effect of aminated polyphenylene sulfide on the mechanical properties of short carbon fiber reinforced polyphenylene sulfide composites. Compos Sci Technol 98:57–63CrossRefGoogle Scholar
  5. 5.
    Song KW, Kim KC (2010) Coating with macroporous polyarylate via a nonsolvent induced phase separation process for enhancement of polyethylene separator thermal stability. J Membr Sci 352(1–2):239–246CrossRefGoogle Scholar
  6. 6.
    Hande VR, Rath SK, Rao S, Patri M (2011) Cross-linked sulfonated poly (ether ether ketone) (SPEEK)/reactive organoclay nanocomposite proton exchange membranes (PEM). J Membr Sci 372(1–2):40–48CrossRefGoogle Scholar
  7. 7.
    Dang HS, Weiber EA and Jannasch P (2015) Poly(phenylene oxide) functionalized with quaternary ammonium groups via flexible alkyl spacers for high-performance anion exchange membranes. J Mater Chem A 3:5280–5284Google Scholar
  8. 8.
    Saxena A, Rao VL, Ninan KN (2003) Synthesis and properties of polyether nitrile copolymers with pendant methyl groups. Eur Polym J 30(1):57–61CrossRefGoogle Scholar
  9. 9.
    Pu ZJ, Tong LF, Feng MN, Jia K, Liu XB (2015) Influence of hyperbranched copper phthalocyanine grafted carbon nanotubes on the dielectric and rheological properties of polyarylene ether nitriles. RSC Adv 5:72028–72036CrossRefGoogle Scholar
  10. 10.
    Yang RQ, Wei RB, Li K, Tong LF, Jia K, Liu XB (2016) Crosslinked polyarylene ether nitrile film as flexible dielectric materials with ultrahigh thermal stability. Sci Rep 6:36434CrossRefGoogle Scholar
  11. 11.
    Wan XY, Zhan YQ, Zeng GY, He Y (2017) Nitrile functionalized halloysite nanotubes/poly(arylene ether nitrile) nanocomposites: interface control, characterization, and improved properties. Appl Surf Sci 393:1–10CrossRefGoogle Scholar
  12. 12.
    Pu ZJ, Zheng XY, Tian YH, Hu LQ, Zhong JC (2017) Flexible ultrahigh-temperature polymer-based dielectrics with high permittivity for film capacitor applications. Polymers 9(11):596CrossRefGoogle Scholar
  13. 13.
    Tang HL, Wang P, Zheng PL, Liu XB (2016) Core-shell structured BaTiO3@polymer hybrid nanofiller for poly(arylene ether nitrile) nanocomposites with enhanced dielectric properties and high thermal stability. Compos Sci Technol 123:134–142CrossRefGoogle Scholar
  14. 14.
    Wan XY, Zhan YQ, Long ZH, Zeng GY, Ren Y, He Y (2017) High-performance magnetic poly (arylene ether nitrile) nanocomposites: co-modification of Fe3O4 via mussel inspired poly(dopamine) and amino functionalized silane KH550. Appl Surf Sci 425:905–914CrossRefGoogle Scholar
  15. 15.
    Yang J, Wang HD, Xu SX, Li GX, Huang YJ (2005) Study on polymerization conditions and structure of poly(phenylene sulfide sulfone). J Polym Res 12(4):317–323CrossRefGoogle Scholar
  16. 16.
    Wiles KB, Wang F, McGrath JE (2005) Directly copolymerized poly(arylene sulfide sulfone) disulfonated copolymers for PEM-based fuel cell systems. I. Synthesis and characterization. J Polym Sci Pol Chem 43(14):2964–2976CrossRefGoogle Scholar
  17. 17.
    Zhang G, Ren HH, Li DS, Long SR, Yang J (2013) Synthesis of highly refractive and transparent poly(arylene sulfide sulfone) based on 4,6-dichloropyrimidine and 3,6-dichloropyridazine. Polymer 54(2):601–606CrossRefGoogle Scholar
  18. 18.
    Robb MJ, Knauss DM (2009) Poly(arylene sulfide)s by nucleophilic aromatic substitution polymerization of 2,7-difluorothianthrene. J Polym Sci Pol Chem 47(9):2453–2461CrossRefGoogle Scholar
  19. 19.
    Lee KS, Kim JP, Lee JS (2010) Synthesis and characterization of low-birefringent crosslinkable fluorinated poly(arylene ether sulfide)s containing pendant phenyl moiety. Polymer 51:632–638CrossRefGoogle Scholar
  20. 20.
    Keller TM (1993) Imide-containing phthalonitrile resin. Polymer 34(5):952–955CrossRefGoogle Scholar
  21. 21.
    Yang J, Tang HL, Zhan YQ, Guo H, Zhao R, Liu XB (2012) Photoelectric properties of poly (arylene ether nitriles)–copper phthalocyanine conjugates complex via in situ polymerization. Mater Lett 72:42–45CrossRefGoogle Scholar
  22. 22.
    Pu ZJ, Chen L, Long Y, Tong LF, Huang X, Liu XB (2013) Influence of composition on the proton conductivity and mechanical properties of sulfonated poly(aryl ether nitrile) copolymers for proton exchange membranes. J Polym Res 20:281CrossRefGoogle Scholar
  23. 23.
    Li C, Tang AB, Zou YB, Liu XB (2006) Preparation and dielectric properties of polyarylene ether nitriles/TiO2 nanocomposite film. Mater Lett 59:59–63CrossRefGoogle Scholar
  24. 24.
    Chen L, Pu ZJ, Yang J, Yang XL, Liu XB (2013) Synthesis and properties of sulfonated polyarylene ether nitrile copolymers for PEM with high thermal stability. J Polym Res 20:45CrossRefGoogle Scholar
  25. 25.
    Port AB, Still RH (1979) Synthesis and characterization of poly (phenylene sulfide), poly(2-methylphenylene sulfide), and poly (2, 6-dimethylphenylene sulfide). J Appl Polym Sci 24(5):1145–1164CrossRefGoogle Scholar
  26. 26.
    Tang HL, Pu ZJ, Huang X, Wei JJ, Liu XB, Lin ZQ (2014) Novel blue-emitting carboxyl-functionalized poly(arylene ether nitrile)s with excellent thermal and mechanical properties. Polym Chem 5:3673–3679CrossRefGoogle Scholar
  27. 27.
    Xu LJ, Gu AQ, Yu ZL (2012) The structure and property characterization of poly(phenylene sulfide/ether) synthesized by reduction of sulfoxide polymer. Chemical Research and Application 24(8):1285–1289Google Scholar
  28. 28.
    You Y, Wei RB, Yang RQ, Yang W, Hua XF, Liu XB (2016) Crystallization behaviors of polyarylene ether nitrile filled in multi-walled carbon nanotubes. RSC Adv 6:70877–70883CrossRefGoogle Scholar
  29. 29.
    Maier G (2001) Low dielectric constant polymers for microelectronics. Prog Polym Sci 26(1):3–65CrossRefGoogle Scholar
  30. 30.
    Maex K, Baklanov MR, Shamiryan D, Iacopi F, Brongersma SH, Yanovitskaya ZSJ (2003) Low dielectric constant materials for microelectronics. Appl Phys 93:8793–8841CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Zejun Pu
    • 1
  • Linqing Hu
    • 1
  • Yuhan Tian
    • 1
  • Xiaoyi Zheng
    • 1
  • Jiachun Zhong
    • 1
  • Xiaobo Liu
    • 2
  1. 1.College of Materials Science and EngineeringSichuan University of Science & EngineeringZigongChina
  2. 2.High Temperature Resistant Polymer and Composites Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations