Fabrication and characterization of hollow nanofibrous PA6 yarn reinforced with CNTs

  • Nazanin Ghane
  • Saeedeh Mazinani
  • Ali Akbar Gharehaghaji


Core-sheath nanofibrous yarns were obtained through electrospinning of polyamide 6 (PA6) solution containing different concentrations of multi-wall carbon nanotubes (MWNTs) as sheath and PVA multifilament as the yarn core. By dissolving PVA, for obtaining conductive hollow nanofibrous PA6/MWNTs yarn, two types of porosity could be obtained including hollow central tube due to the structure of hollow yarn and nano-porous areas embedded in electrospun nanofibers. SEM results showed that the diameters of nanofibers were varying in the range of 103–145 nm obeying MWNTs concentrations and TEM results revealed that the MWNTs were embedded in nanofiber matrix as straight and aligned form. DSC analysis showed that electrospinning process caused the formation of less-ordered γ phase in nanofibers. The electrical conductivity of yarns increased from 10−13 S m−1 to 2.4 × 10−6 S m−1 with increasing the concentration of nanotubes from 0 wt.% to 7 wt.%.


Hollow nanofiber yarn Polyamide 6 Multi-wall carbon nanotubes Surface area 


  1. 1.
    Shokrgozar MA, Mottaghitalab F, Mottaghitalab V, Farokhi M (2011) Fabrication of porous chitosan/poly (vinyl alcohol) reinforced single-walled carbon nanotube nanocomposites for neural tissue engineering. J Biomed Nanotechnol 7(2):276–284CrossRefGoogle Scholar
  2. 2.
    Cao J, Cheng Z, Kang L, Zhang Y, Zhao X, Zhao S, Gao B (2017) Novel anti-fouling polyethersulfone/polyamide 66 membrane preparation for air filtration by electrospinning. Mater Lett 192:12–16CrossRefGoogle Scholar
  3. 3.
    Ma L, Ma SY, Qiang Z, Xu XL, Chen Q, Yang HM, Chen H, Ge Q, Zeng QZ, Wang BQ (2017) Preparation of co-doped LaFeO 3 nanofibers with enhanced acetic acid sensing properties. Mater Lett 200:47–50CrossRefGoogle Scholar
  4. 4.
    Gazquez GC, et al (2017) β-Tricalcium phosphate nanofiber scaffolds with fine unidirectional grains. Materials LettGoogle Scholar
  5. 5.
    Basu P, Repanas A, Chatterjee A, Glasmacher B, NarendraKumar U, Manjubala I (2017) PEO–CMC blend nanofibers fabrication by electrospinning for soft tissue engineering applications. Mater Lett 195:10–13CrossRefGoogle Scholar
  6. 6.
    Jiang Z, Yin M, Wang C (2017) Facile synthesis of Ca 2+/Au co-doped SnO 2 nanofibers and their application in acetone sensor. Mater Lett 194:209–212CrossRefGoogle Scholar
  7. 7.
    Aravindan V, Sundaramurthy J, Suresh Kumar P, Lee YS, Ramakrishna S, Madhavi S (2015) Electrospun nanofibers: a prospective electro-active material for constructing high performance Li-ion batteries. Chem Commun 51(12):2225–2234CrossRefGoogle Scholar
  8. 8.
    Liu Y, Kumar S (2014) Polymer/carbon nanotube nano composite fibers–a review. ACS Appl Mater Interfaces 6(9):6069–6087CrossRefGoogle Scholar
  9. 9.
    Chen J, Wang L, Gui X, Lin Z, Ke X, Hao F, Li Y, Jiang Y, Wu Y, Shi X, Chen L (2017) Strong anisotropy in thermoelectric properties of CNT/PANI composites. Carbon 114:1–7CrossRefGoogle Scholar
  10. 10.
    Chen B, Shen J, Ye X, Imai H, Umeda J, Takahashi M, Kondoh K (2017) Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites. Carbon 114:198–208CrossRefGoogle Scholar
  11. 11.
    Rahman R, Servati P (2012) Effects of inter-tube distance and alignment on tunnelling resistance and strain sensitivity of nanotube/polymer composite films. Nanotechnology 23(5):055703CrossRefGoogle Scholar
  12. 12.
    Goldoni A et al (2009) Sensing gases with carbon nanotubes: a review of the actual situation. J Phys Condens Matter 22(1):013001CrossRefGoogle Scholar
  13. 13.
    Bai H, Shi G (2007) Gas sensors based on conducting polymers. Sensors 7(3):267–307CrossRefGoogle Scholar
  14. 14.
    Faccini M, Vaquero C, Amantia D (2012) Development of protective clothing against nanoparticle based on electrospun nanofibers. J Nanomater 2012:18CrossRefGoogle Scholar
  15. 15.
    Vitchuli N et al (2010) Electrospun ultrathin nylon fibers for protective applications. J Appl Polym Sci 116(4):2181–2187Google Scholar
  16. 16.
    Wang N, Yang Y, al-Deyab SS, el-Newehy M, Yu J, Ding B (2015) Ultra-light 3D nanofibre-nets binary structured nylon 6–polyacrylonitrile membranes for efficient filtration of fine particulate matter. J Mater Chem A 3(47):23946–23954CrossRefGoogle Scholar
  17. 17.
    Wang J et al (2017) Multilevel-layer-structured polyamide 6/poly (trimethylene terephthalate) nanofibrous membranes for low-pressure air filtration. J Appl Polym Sci 134(16)Google Scholar
  18. 18.
    Ahn Y et al (2006) Development of high efficiency nanofilters made of nanofibers. Curr Appl Phys 6(6):1030–1035CrossRefGoogle Scholar
  19. 19.
    Barhate RS, Ramakrishna S (2007) Nanofibrous filtering media: filtration problems and solutions from tiny materials. J Membr Sci 296(1):1–8CrossRefGoogle Scholar
  20. 20.
    Schiffman JD, Elimelech M (2011) Antibacterial activity of electrospun polymer mats with incorporated narrow diameter single-walled carbon nanotubes. ACS Appl Mater Interfaces 3(2):462–468CrossRefGoogle Scholar
  21. 21.
    Tiraferri A, Vecitis CD, Elimelech M (2011) Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties. ACS Appl Mater Interfaces 3(8):2869–2877CrossRefGoogle Scholar
  22. 22.
    Han W, Minhao L, Xin C, Junwei Z, Xindu C, Ziming Z (2015) Study of deposition characteristics of multi-nozzle near-field electrospinning in electric field crossover interference conditions. AIP Adv 5(4):041302CrossRefGoogle Scholar
  23. 23.
    Ding Z, Zhu Y, Branford-White C, Sun K, Um-i-Zahra S, Quan J, Nie H, Zhu L (2014) Self-assembled transparent conductive composite films of carboxylated multi-walled carbon nanotubes/poly (vinyl alcohol) electrospun nanofiber mats. Mater Lett 128:310–313CrossRefGoogle Scholar
  24. 24.
    Ramos PG, Morales NJ, Goyanes S, Candal RJ, Rodríguez J (2016) Moisture-sensitive properties of multi-walled carbon nanotubes/polyvinyl alcohol nanofibers prepared by electrospinning electrostatically modified method. Mater Lett 185:278–281CrossRefGoogle Scholar
  25. 25.
    Liu C-K, He HJ, Sun RJ, Feng Y, Wang QS (2016) Preparation of continuous nanofiber core-spun yarn by a novel covering method. Mater Des 112:456–461CrossRefGoogle Scholar
  26. 26.
    Najafi S, Gharehaghaji A, Etrati S (2016) Fabrication and characterization of elastic hollow nanofibrous PU yarn. Mater Des 99:328–334CrossRefGoogle Scholar
  27. 27.
    Li J, Tian L, Pan N, Pan ZJ (2014) Mechanical and electrical properties of the PA6/SWNTs nanofiber yarn by electrospinning. Polym Eng Sci 54(7):1618–1624CrossRefGoogle Scholar
  28. 28.
    Javazmi L, Ravandi SH, Ghareaghaji A (2014) Fabrication and characterization of PET nanofiber hollow yarn. Fibers Polym 15(5):954–960CrossRefGoogle Scholar
  29. 29.
    Liu H, Kameoka J, Czaplewski DA, Craighead HG (2004) Polymeric nanowire chemical sensor. Nano Lett 4(4):671–675CrossRefGoogle Scholar
  30. 30.
    Chen X, Wong CKY, Yuan CA, Zhang G (2013) Nanowire-based gas sensors. Sensors Actuators B Chem 177:178–195CrossRefGoogle Scholar
  31. 31.
    Ghasemi-Mobarakeh L, Semnani D, Morshed M (2007) A novel method for porosity measurement of various surface layers of nanofibers mat using image analysis for tissue engineering applications. J Appl Polym Sci 106(4):2536–2542CrossRefGoogle Scholar
  32. 32.
    Song K, Zhang Y, Meng J, Green E, Tajaddod N, Li H, Minus M (2013) Structural polymer-based carbon nanotube composite fibers: understanding the processing–structure–performance relationship. Materials 6(6):2543–2577CrossRefGoogle Scholar
  33. 33.
    Mazinani S, Ajji A, Dubois C (2009) Morphology, structure and properties of conductive PS/CNT nanocomposite electrospun mat. Polymer 50(14):3329–3342CrossRefGoogle Scholar
  34. 34.
    Kirtay E (2007) A study of the thermal properties of textured knitted fabrics. Fibres Text East Eur 15(1):60Google Scholar
  35. 35.
    Liu Y, Li J, Pan Z-j (2011) Effect of spinning conditions on the mechanical properties of PA6/MWNTs nanofiber filaments. J Polym Res 18(6):2055–2060CrossRefGoogle Scholar
  36. 36.
    Fakhrali A et al (2016) Analysis of twist level and take-up speed impact on the tensile properties of PVA/PA6 hybrid nanofiber yarns. E-Polymers 16(2):125–135CrossRefGoogle Scholar
  37. 37.
    Navarro-Pardo F, Martínez-Barrera G, Martínez-Hernández A, Castaño V, Rivera-Armenta J, Medellín-Rodríguez F, Velasco-Santos C (2013) Effects on the thermo-mechanical and crystallinity properties of nylon 6, 6 electrospun fibres reinforced with one dimensional (1D) and two dimensional (2D) carbon. Materials 6(8):3494–3513CrossRefGoogle Scholar
  38. 38.
    Bose S, Bhattacharyya AR, Bondre AP, Kulkarni AR, Pötschke P (2008) Rheology, electrical conductivity, and the phase behavior of cocontinuous PA6/ABS blends with MWNT: correlating the aspect ratio of MWNT with the percolation threshold. J Polym Sci B Polym Phys 46(15):1619–1631CrossRefGoogle Scholar
  39. 39.
    Li Y, Shimizu H (2008) Conductive PVDF/PA6/CNTs nanocomposites fabricated by dual formation of cocontinuous and nanodispersion structures. Macromolecules 41(14):5339–5344CrossRefGoogle Scholar
  40. 40.
    Mathew G, Hong JP, Rhee JM, Lee HS, Nah C (2005) Preparation and characterization of properties of electrospun poly (butylene terephthalate) nanofibers filled with carbon nanotubes. Polym Test 24(6):712–717CrossRefGoogle Scholar
  41. 41.
    Fridrikh S et al (2003) Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Phys Rev Lett 90Google Scholar
  42. 42.
    Mazinani S, Ajji A, Dubois C (2010) Fundamental study of crystallization, orientation, and electrical conductivity of electrospun PET/carbon nanotube nanofibers. J Polym Sci B Polym Phys 48(19):2052–2064CrossRefGoogle Scholar
  43. 43.
    Ra EJ, An KH, Kim KK, Jeong SY, Lee YH (2005) Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper. Chem Phys Lett 413(1):188–193CrossRefGoogle Scholar
  44. 44.
    Naebe M, Lin T, Tian W, Dai L, Wang X (2007) Effects of MWNT nanofillers on structures and properties of PVA electrospun nanofibres. Nanotechnology 18(22):225605CrossRefGoogle Scholar
  45. 45.
    Naebe M, Lin T, Staiger MP, Dai L, Wang X (2008) Electrospun single-walled carbon nanotube/polyvinyl alcohol composite nanofibers: structure–property relationships. Nanotechnology 19(30):305702CrossRefGoogle Scholar
  46. 46.
    Ali U, Zhou Y, Wang X, Lin T (2012) Direct electrospinning of highly twisted, continuous nanofiber yarns. J Text Inst 103(1):80–88CrossRefGoogle Scholar
  47. 47.
    Soliman S, Sant S, Nichol JW, Khabiry M, Traversa E, Khademhosseini A (2011) Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density. J Biomed Mater Res A 96(3):566–574CrossRefGoogle Scholar
  48. 48.
    Moniruzzaman M, Chattopadhyay J, Billups WE, Winey KI (2007) Tuning the mechanical properties of SWNT/nylon 6, 10 composites with flexible spacers at the interface. Nano Lett 7(5):1178–1185CrossRefGoogle Scholar
  49. 49.
    McClory C, McNally T, Baxendale M, Pötschke P, Blau W, Ruether M (2010) Electrical and rheological percolation of PMMA/MWCNT nanocomposites as a function of CNT geometry and functionality. Eur Polym J 46(5):854–868CrossRefGoogle Scholar
  50. 50.
    Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46(6):833–840CrossRefGoogle Scholar
  51. 51.
    Osswald S, Havel M, Gogotsi Y (2007) Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J Raman Spectrosc 38(6):728–736CrossRefGoogle Scholar
  52. 52.
    MacKenzie K, Dunens O, Harris AT (2009) A review of carbon nanotube purification by microwave assisted acid digestion. Sep Purif Technol 66(2):209–222CrossRefGoogle Scholar
  53. 53.
    Dror Y, Salalha W, Khalfin RL, Cohen Y, Yarin AL, Zussman E (2003) Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir 19(17):7012–7020CrossRefGoogle Scholar
  54. 54.
    Saeed K, Park SY (2012) Effect of nanoclay on the thermal, mechanical, and crystallization behavior of nanofiber webs of nylon-6. Polym Compos 33(2):192–195CrossRefGoogle Scholar
  55. 55.
    Lee B-S, Yu W-R (2010) PA6/MWNT nanocomposites fabricated using electrospun nanofibers containing MWNT. Macromol Res 18(2):162–169CrossRefGoogle Scholar
  56. 56.
    Hu N, Karube Y, Yan C, Masuda Z, Fukunaga H (2008) Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater 56(13):2929–2936CrossRefGoogle Scholar
  57. 57.
    Rangari VK, Yousuf M, Jeelani S, Pulikkathara MX, Khabashesku VN (2008) Alignment of carbon nanotubes and reinforcing effects in nylon-6 polymer composite fibers. Nanotechnology 19(24):245703CrossRefGoogle Scholar
  58. 58.
    Coleman JN, Cadek M, Ryan KP, Fonseca A, Nagy JB, Blau WJ, Ferreira MS (2006) Reinforcement of polymers with carbon nanotubes. The role of an ordered polymer interfacial region. Experiment and modeling. Polymer 47(26):8556–8561CrossRefGoogle Scholar
  59. 59.
    Li CY, Li L, Cai W, Kodjie SL, Tenneti KK (2005) Nanohybrid shish-kebabs: periodically functionalized carbon nanotubes. Adv Mater 17(9):1198–1202CrossRefGoogle Scholar
  60. 60.
    Kota AK, Cipriano BH, Duesterberg MK, Gershon AL, Powell D, Raghavan SR, Bruck HA (2007) Electrical and rheological percolation in polystyrene/MWCNT nanocomposites. Macromolecules 40(20):7400–7406CrossRefGoogle Scholar
  61. 61.
    Chen D, Liu T, Zhou X, Tjiu WC, Hou H (2009) Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes. J Phys Chem B 113(29):9741–9748CrossRefGoogle Scholar
  62. 62.
    Ayutsede J, Gandhi M, Sukigara S, Ye H, Hsu CM, Gogotsi Y, Ko F (2006) Carbon nanotube reinforced Bombyx Mori silk nanofibers by the electrospinning process. Biomacromolecules 7(1):208–214CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Nazanin Ghane
    • 1
  • Saeedeh Mazinani
    • 2
  • Ali Akbar Gharehaghaji
    • 1
  1. 1.Department of Textile EngineeringAmirkabir University of TechnologyTehranIran
  2. 2.Amirkabir Nanotechnology Research Institute (ANTRI)Amirkabir University of TechnologyTehranIran

Personalised recommendations