Advertisement

Methacrylamide grafted elastomer composites reinforced with biobased particles

  • Lei Jong
ORIGINAL PAPER
  • 60 Downloads

Abstract

Modulus of rubber can be improved with grafting of unsaturated monomers. To increase the modulus of bio-based rubber composites, methacrylamide was grafted onto natural rubber composites reinforced with bio-based hydrophilic particles. Rubber particles in water were modified with methacrylamide using redox free radical initiator. Modified rubber composites have higher crosslinking density, bound rubber, and modulus than the unmodified rubber composites. Without methacrylamide, initiator modified rubber composites have poor tensile strength and elongation. The modified rubber has a greater stress relaxation rate than the unmodified rubber because of interactions between methacrylamide grafts. Relaxation behaviors of modified and unmodified rubber composites are similar because the effect of filler dominates the dissociation process. The rapid increase of reinforcement factors with filler content can be described by the modified Mooney equation. At small strain, the reinforcement factors for both modified and unmodified rubber composites indicate the association of poly(methacrylamide) grafts is the main contribution to the increase of modulus in the modified rubber composites.

Keywords

Methacrylamide Rubber composites Mechanical properties Rubber filler 

Notes

Acknowledgements

The author thanks A. Thompson for conducting SEM imaging of rubber composites.

References

  1. 1.
    Soratana K, Rasutis D, Azarabadi H, Eranki PL, Landis AE (2017) Guayule as an alternative sources of natural rubber: a comparative life cycle assessment with Hevea and synthetic rubber. J Clean Prod 159:271–280CrossRefGoogle Scholar
  2. 2.
    Fukushima Y, Kawahara S, Tanaka Y (1998) Synthesis of graft copolymers from highly deproteinised natural rubber. J Rubber Res 1:154–166Google Scholar
  3. 3.
    Kawahara S, Kawazura T, Sawada T, Isono Y (2003) Preparation and characterization of natural rubber dispersed in nano-matrix. Polymer 44:4527–4531CrossRefGoogle Scholar
  4. 4.
    Kongparakul S, Prasassarakich P, Rempel GL (2009) Catalytic hydrogenation of styrene-g-natural rubber (ST-g-NR) in the presence of OsHCl(CO)(O2)(PCy3)2. Eur Polym J 45:2358–2373CrossRefGoogle Scholar
  5. 5.
    Hourston DJ, Romaine J (1991) Modification of natural rubber latex. III. Natural rubber polystyrene composite latexes synthesized using azobisisobutyronitrile as initiator. J Appl Polym Sci 43:2207–2211CrossRefGoogle Scholar
  6. 6.
    Jaimuang S, Vatanatham T, Limtrakul S, Prapainaina P (2015) Kinetic studies of styrene-grafted natural rubber emulsion copolymerization using transmission electron microscope and thermal gravimetric analysis. Polymer 67:249–257CrossRefGoogle Scholar
  7. 7.
    Hourston DJ, Romaine J (1990) Modification of natural rubber latex. II. Natural rubber poly(methyl methacrylate) composite latexes synthesized using an amine-activated hydroperoxide. J Appl Polym Sci 39:1587–1594CrossRefGoogle Scholar
  8. 8.
    Nakason C, Kaesaman A, Yimwan N (2003) Preparation of graft copolymers from deproteinized and high ammonia concentrated natural rubber lattices with methyl methacrylate. J Appl Polym Sci 87:68–75CrossRefGoogle Scholar
  9. 9.
    Thiraphattaraphun L, Kiatkamjornwong S, Prasassarakich P, Damronglerd S (2001) Natural rubber-g-methyl methacrylate/Poly(methyl methacrylate) blends. J Appl Polym Sci 81:428–439CrossRefGoogle Scholar
  10. 10.
    Hourston DJ, Romaine J (1989) Modification of natural rubber latex. I. Natural rubber-polystyrene composite latexes synthesized using an amine-activated hydroperoxide. Eur Polym J 25:695–700CrossRefGoogle Scholar
  11. 11.
    Arayapranee W, Prasassarakich P, Rempel GL (2003) Process variables and their effects on grafting reactions of styrene and methyl methacrylate onto natural rubber. J Appl Polym Sci 89(1):63–74CrossRefGoogle Scholar
  12. 12.
    Wongthong P, Nakason C, Pan Q, Rempel GL, Kiatkamjornwong S (2013) Modification of deproteinized natural rubber via grafting polymerization with maleic anhydride. Eur Polym J 49:4035–4046CrossRefGoogle Scholar
  13. 13.
    Wongthong P, Nakason C, Pan Q, Rempel GL, Kiatkamjornwong S (2014) Styrene-assisted grafting of maleic anhydride onto deproteinized natural rubber. Eur Polym J 59:144–155CrossRefGoogle Scholar
  14. 14.
    Pongpilaipruet A, Magaraphan R (2015) Synthesis, characterization and degradation behavior of admicelled polacrylate-natural rubber. Mater Chem Phys 160:194–204CrossRefGoogle Scholar
  15. 15.
    Mohapatra S, Nando GB (2013) Chemical modification of natural rubber in the latex stage by grafting cardanol, a waste from the cashew industry and a renewable resource. Ind Eng Chem Res 52:5951–5957CrossRefGoogle Scholar
  16. 16.
    Kangwansupamonkon W, Fellows CM, Lamb DJ, Gibert RG, Kiatkamjornwong S (2004) Kinetics of surface grafting on polyisoprene latexes by reaction calorimetry. Polymer 45:5775–5784CrossRefGoogle Scholar
  17. 17.
    Kangwansupamonkon W, Gibert RG, Kiatkamjornwong S (2005) Modification of natural rubber by grafting with hydrophilic monomers. Macromol Chem Phys 206:2450–2460CrossRefGoogle Scholar
  18. 18.
    Lamb DJ, Anstey JF, Fellows CM, Monteiro MJ, Gibert RG (2001) Modification of natural and artificial polymer colloids by “topology-controlled” emulsion polymerization. Biomacromolecules 2:518–525CrossRefGoogle Scholar
  19. 19.
    Burfield DR, Ng SC (1978) Persulphate initiated graft copolymerization of methacrylamide in natural rubber latex–I the influence of non-rubber components. Eur Polym J 14:789–792CrossRefGoogle Scholar
  20. 20.
    Burfield DR, Ng SC (1978) Persulphate initiated graft copolymerization of methacrylamide in natural rubber latex–II a kinetic study. Eur Polym J 14:793–797CrossRefGoogle Scholar
  21. 21.
    Burfield DR, Ng SC (1978) Persulphate initiated graft copolymerization of methacrylamide in natural rubber latex–III characterization of graft copolymer. Eur Polym J 14:799–802CrossRefGoogle Scholar
  22. 22.
    Rouilly A, Rigal L, Gilbert RG (2004) Synthesis and properties of composites of starch and chemically modified natural rubber. Polymer 45:7813–7820CrossRefGoogle Scholar
  23. 23.
    Greve H-H (2000). Rubber, 2. Natural. In Ullmann’s encyclopaedia of industrial chemistry. Wiley-VCH, WeinheimGoogle Scholar
  24. 24.
    Archer BL, Barnard D, Cockbain EG, Dickenson PB, McMullen AI (1963) Chapter 3, structure, composition and biochemistry of Hevea latex. In: Bateman L (ed) The chemistry and physics of rubber-like substances. MacLaren & Sons, LondonGoogle Scholar
  25. 25.
    Stewart J, Linnig FJ (1967) The far infrared spectrum of vulcanized natural rubber. J Res Natl Bur Stand Sec A Phys Chem 71A(1):19–23CrossRefGoogle Scholar
  26. 26.
    Dinsmore HL, Don Smith C (1948) Analysis of natural and synthetic rubber by infrared spectroscopy. Anal Chem 20:11–24CrossRefGoogle Scholar
  27. 27.
    Kishore K, Pandey HK (1986) Spectral studies on plant rubbers. Prog Polym Sci 12:155–178CrossRefGoogle Scholar
  28. 28.
    Nallasamy P, Mohan S (2004) Vibrational spectra of cis-1,4-polyisoprene. Arab J Sci Eng 29:17–26Google Scholar
  29. 29.
    Lu FJ, Hsu SL (1987) A vibrational spectroscopic analysis of the structure of natural rubber. Rubber Chem Technol 60:647–658CrossRefGoogle Scholar
  30. 30.
    Barth A (2007) Infrared spectroscopy of proteins. Biocheim Biophys Acta 1767:1073–1101Google Scholar
  31. 31.
    Salaeh S, Nakason C (2012) Influence of modified natural rubber and structure of carbon black on properties of natural rubber compounds. Polym Compos 33:489–500CrossRefGoogle Scholar
  32. 32.
    Yu H, Zeng Z, Lu G, Wang Q (2008) Processing characteristics and thermal stabilities of gel and sol of expoxidized natural rubber. Eur Polym J 44:453–464CrossRefGoogle Scholar
  33. 33.
    Eng AH, tanaka Y, Gan SN (1992) FTIR studies on amino groups in purified Hevea rubber. J Nat Rubber Res 7:152–155Google Scholar
  34. 34.
    Haider KS (2012) Rubber soul - the investigation of rubber by vibrational spectroscopy. M. Sc. Thesis, Berlin University, Germany, 2012Google Scholar
  35. 35.
    Ghosh P, Katare S, Patkar P, Caruthers JM, Venkatasubramanian V (2003) Sulfur vulcanization of natural rubber for benzothiazole accelerated formulations: from reaction mechanism to a rational kinetic model. Rubber Chem Technol 76:592–692CrossRefGoogle Scholar
  36. 36.
    Brandrup J, Immergut EH, Grulke EA (1999) Polymer Handbook4th edn. John Wiley & Sons, New YorkGoogle Scholar
  37. 37.
    Mackenzie CI, Scanlan J (1984) Stress relaxation in carbon-black-filled rubber vulcanizates at moderate strains. Polymer 25:559–568CrossRefGoogle Scholar
  38. 38.
    Ahmed S, Jones FR (1990) A review of particulate reinforcement theories for polymer composites. J Mater Sci 25:4933–4942CrossRefGoogle Scholar
  39. 39.
    Brodnyan JG (1959) The concentration dependence of the Newtonian viscosity of prolate ellipsoids. Trans Soc Rheology 3:61–68CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Plant Polymer ResearchPeoriaUSA

Personalised recommendations