Journal of Polymer Research

, 25:59 | Cite as

Enhancement of UV-aging resistance of UV-curable polyurethane acrylate coatings via incorporation of hindered amine light stabilizers-functionalized TiO2-SiO2 nanoparticles

ORIGINAL PAPER
  • 139 Downloads

Abstract

In this study, polymeric hindered amine light stabilizers (HALS)-functionalized silica coated rutile titanium dioxide (TiO2-SiO2) nanoparticles were prepared by encapsulating commercially available TiO2-SiO2 nanoparticles with methyl methacrylate (MMA) and 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate (PMPM) copolymers via miniemulsion polymerization. The obtained functional (TiO2-SiO2/P(MMA-co-PMPM)) fillers have been added to polyurethane acrylate (PUA) oligomers to get UV-curable nanocomposite coatings. The functionalization of the TiO2-SiO2 nanoparticles with polymeric HALS has been confirmed by infrared spectra (IR), thermogravimetric (TG), and X-ray photoelectron spectroscopy (XPS) analyses. The scanning electron microscope (SEM) micrographs indicated that homogeneous dispersion of TiO2-SiO2/P(MMA-co-PMPM) composite nanoparticles resulted in improved transparency and mechanical properties of the UV-curable PUA coatings. Rhodamine B (Rh.B) photodegradation measurement confirmed the excellent UV-shielding performance of PUA nanocomposite coatings containing TiO2-SiO2/P(MMA-co-PMPM). The addition of TiO2-SiO2/P(MMA-co-PMPM) composite nanoparticles reduced the UV-curable PUA coatings degradation rate dramatically. The UV-aging resistance of PUA coatings was improved significantly. Over all, the combination of TiO2-SiO2 nanoparticles and polymeric HALS offers an attractive way to fabricate the multi-functional fillers, which can be used to improve the mechanical properties and UV-aging resistance of PUA coatings simultaneously.

Keywords

Nanocomposite coatings Polyurethane acrylate Hindered amine light stabilizers Composite nanoparticles UV-aging resistance 

Notes

Acknowledgments

This work was supported by the Natural Science Foundation of Hebei Province (B2017202028). The authors greatly appreciate the foundation.

References

  1. 1.
    Chattopadhyay DK, Raju K (2007) Structural engineering of polyurethane coatings for high performance applications. Prog Polym Sci 32:352–418CrossRefGoogle Scholar
  2. 2.
    Fang ZH, Duan HY, Zhang ZH, Wang J, Li DQ, Huang YX, Shang JJ, Liu ZY (2011) Novel heat-resistance UV curable waterborne polyurethane coatings modified by melamine. Appl Surf Sci 257:4765–4768CrossRefGoogle Scholar
  3. 3.
    Chang ST, Chou PL (2000) Photodiscoloration inhibition of wood coated with UV-curable acrylic clear coatings and its elucidation. Polym Degrad Stab 69:355–360CrossRefGoogle Scholar
  4. 4.
    Wouters MEL, Wolfs DP, Van der Linde MC, Hovens JHP, Tinnemans AHA (2004) Transparent UV curable antistatic hybrid coatings on polycarbonate prepared by the sol–gel method. Prog Org Coat 51:312–319CrossRefGoogle Scholar
  5. 5.
    Xu G, Shi W (2005) Synthesis and characterization of hyperbranched polyurethane acrylates used as UV curable oligomers for coatings. Prog Org Coat 52:110–117CrossRefGoogle Scholar
  6. 6.
    Sow C, Riedl B, Blanchet P (2011) UV-waterborne polyurethane-acrylate nanocomposite coatings containing alumina and silica nanoparticles for wood: mechanical, optical, and thermal properties assessment. J Coat Technol Res 8:211–221CrossRefGoogle Scholar
  7. 7.
    Mishra RS, Mishra AK, Raju K (2009) Synthesis and property study of UV-curable hyperbranched polyurethane acrylate/ZnO hybrid coatings. Eur Polym J 45:960–966CrossRefGoogle Scholar
  8. 8.
    Makki H, Adema KNS, Hendrix MMRM, Peters EAJF, Laven J, Van der Ven LGJ, Van Benthem RATM, De With G (2015) Weathering of a polyester-urethane clearcoat: lateral inhomogeneities. Polym Degrad Stab 122:180–186CrossRefGoogle Scholar
  9. 9.
    Adema KNS, Makki H, Peters EAJF, Laven J, Van der Ven LGJ, Van Benthem RATM, De With G (2016) The influence of the exposure conditions on the chemical and physical changes of polyester–urethane coatings during photodegradation. Polym Degrad Stab 123:13–25CrossRefGoogle Scholar
  10. 10.
    Larché JF, Bussière PO, Gardette JL (2010) How to reveal latent degradation of coatings provoked by UV-light. Polym Degrad Stab 95:1810–1817CrossRefGoogle Scholar
  11. 11.
    Nguyen TV, Tri PN, Nguyen TD, Aidani RE, Trinh VT, Decker C (2016) Accelerated degradation of water borne acrylic nanocomposites used in outdoor protective coatings. Polym Degrad Stab 128:65–76CrossRefGoogle Scholar
  12. 12.
    Decker C, Biry S, Zahouily K (1995) Photostabilisation of organic coatings. Polym Degrad Stab 49:111–119CrossRefGoogle Scholar
  13. 13.
    Hodgson JL, Coote ML (2010) Clarifying the mechanism of the Denisov cycle: how do hindered amine light stabilizers protect polymer coatings from photo-oxidative degradation? Macromolecules 43:4573–4583CrossRefGoogle Scholar
  14. 14.
    Sun GJ, Jang HJ, Kaang SY, Chae KH (2002) A new polymeric HALS: preparation of an addition polymer of DGEBA–HALS and its photostabilizing effect. Polymer 43:5855–5863CrossRefGoogle Scholar
  15. 15.
    Singh RP, Prasad AV, Pandey JK (2001) Synthesis, characterization and performance evaluation of polymeric hindered amine light stabilizers in styrenic polymers. Macromol Chem Phys 202:672–680CrossRefGoogle Scholar
  16. 16.
    Wilén CE, Auer M, Strandén J, Näsman JH (2000) Synthesis of novel hindered amine light stabilizers (HALS) and their copolymerization with ethylene or propylene over both soluble and supported metallocene catalyst systems. Macromolecules 33:5011–5026CrossRefGoogle Scholar
  17. 17.
    Auer M, Nicolas R, Vesterinen A, Luttikhedde H, Wilén CE (2004) Facile synthetic route to polymerizable hindered amine light stabilizers for transition-metal-catalyzed olefin copolymerization. J Polym Sci A Polym Chem 42:1350–1355CrossRefGoogle Scholar
  18. 18.
    Mathiazhagan A, Joseph R (2011) Nanotechnology-a New prospective in organic coating-review. Int J Chem Eng Appl 2:225–237Google Scholar
  19. 19.
    Miklečić J, Blagojević SL, Petrič M, Jirouš-Rajković V (2015) Influence of TiO2 and ZnO nanoparticles on properties of waterborne polyacrylate coating exposed to outdoor conditions. Prog Org Coat 89:67–74CrossRefGoogle Scholar
  20. 20.
    Catalan J, Fabero F, Soledad Guijarro M, Claramunt RM, Santa Maria MD, Foces-Foces MC, Hernandez Cano F, Elguero J, Sastre R (1990) Photoinduced intramolecular proton transfer as the mechanism of ultraviolet stabilizers: a reappraisal. J Am Chem Soc 112:747–759CrossRefGoogle Scholar
  21. 21.
    Calvo ME, Castro Smirnov JR, Míguez H (2012) Novel approaches to flexible visible transparent hybrid films for ultraviolet protection. J Polym Sci B Polym Phys 50:945–956CrossRefGoogle Scholar
  22. 22.
    Veronovski N, Verhovšek D, Godnjavec J (2013) The influence of surface-treated nano-TiO2 (rutile) incorporation in water-based acrylic coatings on wood protection. Wood Sci Technol 47:317–328CrossRefGoogle Scholar
  23. 23.
    Pakdel E, Daoud WA, Sun L, Wang X (2015) Reprint of: photostability of wool fabrics coated with pure and modified TiO2 colloids. J Colloid Interface Sci 447:191–201CrossRefGoogle Scholar
  24. 24.
    Chen JH, Dai CA, Chen HJ, Chien PC, Chiu WY (2007) Synthesis of nano-sized TiO2/poly(AA-co-MMA) composites by heterocoagulation and blending with PET. J Colloid Interface Sci 308:81–92CrossRefGoogle Scholar
  25. 25.
    Schaller C, Rogez D, Braig A (2008) Hydroxyphenyl-s-triazines: advanced multipurpose UV-absorbers for coatings. J Coat Technol Res 5:25–31CrossRefGoogle Scholar
  26. 26.
    Lü C, Cui Z, Li Z, Yang B, Shen J (2003) High refractive index thin films of ZnS/polythiourethane nanocomposites. J Mater Chem 13:526–530CrossRefGoogle Scholar
  27. 27.
    Lin Y, Meziani MJ, Sun YP (2007) Functionalized carbon nanotubes for polymeric nanocomposites. J Mater Chem 17:1143–1148CrossRefGoogle Scholar
  28. 28.
    Chen XD, Wang Z, Liao ZF, Mai YL, Zhang MQ (2007) Roles of anatase and rutile TiO2 nanoparticles in photooxidation of polyurethane. Polym Test 26:202–208CrossRefGoogle Scholar
  29. 29.
    Christensen PA, Dilks A, Egerton TA, Temperley J (1999) Infrared spectroscopic evaluation of the photodegradation of paint Part I The UV degradation of acrylic films pigmented with titanium dioxide. J Mater Sci 34:5689–5700CrossRefGoogle Scholar
  30. 30.
    Powell QH, Fotou GP, Kodas TT, Anderson BM (1997) Synthesis of alumina-and alumina/silica-coated titania particles in an aerosol flow reactor. Chem Mater 9:685–693CrossRefGoogle Scholar
  31. 31.
    Chen C, Wang Y, Pan G, Wang Q (2014) Gel-sol synthesis of surface-treated TiO2 nanoparticles and incorporation with waterborne acrylic resin systems for clear UV protective coatings. J Coat Technol Res 11:785–791CrossRefGoogle Scholar
  32. 32.
    McLaren K (1976) XIII—The development of the CIE 1976 (L* a* b*) uniform colour space and colour-difference formula. Color Technol 92:338–341Google Scholar
  33. 33.
    Li QL, Wang L, Qiu XL, Sun YL, Wang PX, Liu Y, Li F, Qi AD, Gao H, Yang YW (2014) Stimuli-responsive biocompatible nanovalves based on β-cyclodextrin modified poly(glycidyl methacrylate). Polym Chem 5:3389–3395CrossRefGoogle Scholar
  34. 34.
    Tan LL, Li H, Zhou Y, Zhang Y, Feng X, Wang B, Yang YW (2015) Zn2+-triggered drug release from biocompatible zirconium MOFs equipped with supramolecular gates. Small 11:3807–3813CrossRefGoogle Scholar
  35. 35.
    Ma JZ, Hu J, Zhang ZJ (2007) Polyacrylate/silica nanocomposite materials prepared by sol–gel process. Eur Polym J 43:4169–4177CrossRefGoogle Scholar
  36. 36.
    Khadem-Hosseini A, Mirabedini S, Pazokifard S (2016) Photocatalytic activity and colloidal stability of various combinations of TiO2/SiO2 nanocomposites. J Mater Sci 51:3219–3230CrossRefGoogle Scholar
  37. 37.
    Gao Y, Song Y, Zheng Q (2012) Miniemulsion polymerized titania/polystyrene core–shell nanocomposite particles based on nanotitania powder: morphology, composition and suspension rheology. Colloids Surf A Physicochem Eng Asp 411:40–49CrossRefGoogle Scholar
  38. 38.
    Zhang Y, Zuo M, Liu T, Song Y, Zheng Q (2016) Segmental dynamics and rheology of miscible poly(vinylidene fluoride)/poly(methyl methacrylate) (70/30 by weight) blend filled with titania or poly(methyl methacrylate)-grafted titania. Compos Sci Technol 123:39–48CrossRefGoogle Scholar
  39. 39.
    Lin HC, Li CC, Lee JT (2011) Nitroxide polymer brushes grafted onto silica nanoparticles as cathodes for organic radical batteries. J Power Sources 196:8098–8103CrossRefGoogle Scholar
  40. 40.
    Zou J, Zhao Y, Yang M, Dan Y (2008) Preparation and characterization of poly(MMA-M12-BPMA)/TiO2 composite particles. Colloid Polym Sci 286:1009–1018CrossRefGoogle Scholar
  41. 41.
    You B, Zhou D, Yang F, Ren X (2011) Synthesis and characterization of core–shell polyacrylate particles containing hindered amine light stabilizers. Colloids Surf A Physicochem Eng Asp 392:365–370CrossRefGoogle Scholar
  42. 42.
    Xu K, Zhou S, Wu L (2009) Effect of highly dispersible zirconia nanoparticles on the properties of UV-curable poly(urethane-acrylate) coatings. J Mater Sci 44:1613–1621CrossRefGoogle Scholar
  43. 43.
    Kang DJ, Park GU, Im HG, Park HY, Jin J (2016) Silica nanoparticle-embedded urethane acrylate nanohybrid thermosets for photo-patternable transparent hard coating. Polymer 105:19–24CrossRefGoogle Scholar
  44. 44.
    Decker C, Moussa K, Bendaikha T (1991) Photodegradation of UV-cured coatings II. Polyurethane–acrylate networks. J Polym Sci A Polym Chem 29:739–747CrossRefGoogle Scholar
  45. 45.
    Wang S, Wang T, Chen W, Hori T (2008) Phase-selectivity photocatalysis: a new approach in organic pollutants’ photodecomposition by nanovoid core(TiO2)/shell(SiO2) nanoparticles. Chem Commun 32:3756–3758CrossRefGoogle Scholar
  46. 46.
    Mirabedini SM, Sabzi M, Zohuriaan-Mehr J, Atai M, Behzadnasab M (2011) Weathering performance of the polyurethane nanocomposite coatings containing silane treated TiO2 nanoparticles. Appl Surf Sci 257:4196–4203CrossRefGoogle Scholar
  47. 47.
    Siddiquey IA, Ukaji E, Furusawa T, Sato M, Suzuki N (2007) The effects of organic surface treatment by methacryloxypropyltrimethoxysilane on the photostability of TiO2. Mater Chem Phys 105:162–168CrossRefGoogle Scholar
  48. 48.
    Tahmassebi N, Moradian S, Mirabedini SM (2005) Evaluation of the weathering performance of basecoat/clearcoat automotive paint systems by electrochemical properties measurements. Prog Org Coat 54:384–389CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Polymer Science and EngineeringHebei University of TechnologyTianjinChina

Personalised recommendations