Preparation of high-performance antifouling polyphenylsulfone ultrafiltration membrane by the addition of sulfonated polyaniline

ORIGINAL PAPER
  • 116 Downloads

Abstract

In this work, blend ultrafiltration (UF) membranes were prepared on the basis of polyphenylsulfone (PPSU)/sulfonated polyaniline (SPANI). A synthesis method based on non-solvent induced phase separation (NIPS) with PPSU/SPANI dissolved in N-methyl-2-pyrrolidone (NMP) was proposed. The self-doped SPANI was prepared as zwitterionic polymer to improve the anti-fouling property of PPSU UF membrane. The morphological characteristics and structure of the membranes were observed under a field emission scanning electron microscope. Results revealed that the membranes exhibited a typical asymmetric structure with a dense top layer and a porous structure. The BSA adsorption of the modified membranes was weaker than that of the PPSU membrane. The water permeate fluxes of the prepared membranes were higher than those of the pure PPSU membrane. The PPSU/SPANI membrane showed highly improved water flux, which was almost 2 times higher than that of the PPSU membrane, whereas the rejection of prepared membrane was still maintained at a high level. The bovine serum albumin BSA rejection rate of the membranes decreased from 99% to 96%. The surface hydrophilicity of the static contact angle of the modified membranes increased. The X-ray photoelectron spectra and surface zeta potential of the membranes were also examined. The water flux recovery ratio, total fouling ratio, reversible fouling ratio, and irreversible fouling ratio also enhanced the antifouling property of the modified membranes. The proposed method provides a simple and convenient approach to prepare antifouling UF membranes.

Keywords

Polyphenysulfone Antifouling Self-doped polyaniline Zwitterionic membrane 

Notes

Acknowledgments

We are grateful for the finanicial support from the Science and Technology Department Plan of Jilin Province, China (No.:20150203010GX).

References

  1. 1.
    Werber JR, Osuji CO, Elimelech M (2016). Nat Rev Mater 16018Google Scholar
  2. 2.
    Rohani MM, Zydney AL (2012). J Membr Sci 397-398:1–8CrossRefGoogle Scholar
  3. 3.
    Zhao Y-F et al (2013). J Membr Sci 440:40–47CrossRefGoogle Scholar
  4. 4.
    Zhao Y-F et al (2014). J Membr Sci 470:148–158CrossRefGoogle Scholar
  5. 5.
    Birkner M, Ulbricht M (2015). J Membr Sci 494:57–67CrossRefGoogle Scholar
  6. 6.
    Gu Y, Wiesner U (2015). Macromolecules 48:6153–6159CrossRefGoogle Scholar
  7. 7.
    Lin X et al (2015). J Membr Sci 482:67–75CrossRefGoogle Scholar
  8. 8.
    Mi Y-F et al (2015). J Membr Sci 490:311–320CrossRefGoogle Scholar
  9. 9.
    Fan X et al (2016). J Membr Sci 499:56–64CrossRefGoogle Scholar
  10. 10.
    Liu Y et al (2016). J Membr Sci 499:406–417CrossRefGoogle Scholar
  11. 11.
    Fane AG, Wang R, Hu MX (2015). Angew Chem Int Ed Eng 54:3368–3386CrossRefGoogle Scholar
  12. 12.
    Sotto A et al (2014). J Mater Chem A 2:7054–7064CrossRefGoogle Scholar
  13. 13.
    Mokhtari S et al (2017). Appl Surf Sci 393:93–102CrossRefGoogle Scholar
  14. 14.
    Zhang Q et al (2010). J Membr Sci 349:217–224CrossRefGoogle Scholar
  15. 15.
    Yang L, Tang B, Wu P (2014). J Mater Chem A 2:18562–18573CrossRefGoogle Scholar
  16. 16.
    Meng H, Cheng Q, Li C (2014). Appl Surf Sci 303:399–405CrossRefGoogle Scholar
  17. 17.
    Ji J et al (2015). J Membr Sci 495:91–100CrossRefGoogle Scholar
  18. 18.
    Chen Y, Wei M, Wang Y (2016). J Membr Sci 505:53–60CrossRefGoogle Scholar
  19. 19.
    Xu C et al (2016). Appl Surf Sci 385:130–138CrossRefGoogle Scholar
  20. 20.
    Yue W-W et al (2013). J Membr Sci 446:79–91CrossRefGoogle Scholar
  21. 21.
    Xiang T et al (2015). J Membr Sci 476:234–242CrossRefGoogle Scholar
  22. 22.
    Sun Q et al (2006). J Membr Sci 285:299–305CrossRefGoogle Scholar
  23. 23.
    Shi Q et al (2008). J Membr Sci 319:271–278CrossRefGoogle Scholar
  24. 24.
    Darvishmanesh S et al (2011). J Membr Sci 379:60–68CrossRefGoogle Scholar
  25. 25.
    Hwang L-L, Chen J-C, Wey M-Y (2013). Desalination 313:166–175CrossRefGoogle Scholar
  26. 26.
    Wei X-L, Wang YZ, Long SM, Bobeczko C, Epstein AJ (1996). J Am Chem Soc 118:2545–2555CrossRefGoogle Scholar
  27. 27.
    Chun Li KM, Imae T (2003). Macromolecules 36:9957–9965CrossRefGoogle Scholar
  28. 28.
    Zhang L (2006). J Solid State Electrochem 11:365–371CrossRefGoogle Scholar
  29. 29.
    Kaplan S, Conwell EM, Richter AF, MacDiarmid AG (1989). Macromolecules 22:1669–1675CrossRefGoogle Scholar
  30. 30.
    Jiang Yue AJE (1990). J Am Chem Soc 112:2800–2801CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of ChemistryJilin UniversityChangchunP. R. China

Personalised recommendations