Journal of Polymer Research

, 25:60 | Cite as

Laponite-graphene oxide hybrid particulate filler enhances mechanical properties of cross-linked epoxy

  • Devesh K. Chouhan
  • Arvind Kumar
  • Sangram K. Rath
  • Sanjay Kumar
  • Prasant S. Alegaonkar
  • G. Harikrishnan
  • T. Umasankar Patro


A new hybrid of Laponite and graphene oxide (LGO), prepared in aqueous media by ultrasonication followed by solvent evaporation was used to reinforce epoxy matrix. The hybrid system was dispersed in liquid epoxy using a two-step solvent-assisted process. The suspensions showed negligible enhancements in processing barrier as revealed by rheology. A combinatorial analysis of small-angle x-ray scattering (SAXS) and microscopy suggested uniform dispersion of nanofillers in the matrix. The fillers showed fractal dimensions in polymer matrix as inferred from SAXS studies. Below 0.5 wt% LGO, the structure showed surface fractal and above 0.5 wt% the composites showed mass fractal, indicating a transformation from well-dispersed to agglomerated composites as the filler content increases. The composites exhibited substantial improvements in various mechanical properties. Notably, the flexural strength and modulus increased by ~23% and ~29%, respectively, with only 0.5 wt% LGO and the fracture toughness showed an increment of ~23% with 0.3 wt% LGO in epoxy matrix. A bimodal distribution of glass transition temperature (T g ) with improved T g was obtained for the composites. The simultaneous strengthening and toughening effects of nanofillers are explained by means of fractography.


Nanocomposites Mechanical properties Graphene oxide Laponite 



TUP would like to thankfully acknowledge lab facilities and financial support from DIAT (DIAT/F/MATE/4845/TUP) and the funding from DST under Fast Track Project for Young Scientist (SB/FT/CS-043/2012). We would like to thank Dr. R. K. Goyal, COEP, Pune for TGA studies. The funding from DRDO–DIAT Program on Nanomaterials by ER-IPR, DRDO is thankfully acknowledged.

Supplementary material

10965_2018_1461_MOESM1_ESM.docx (3 mb)
ESM 1 (DOCX 3065 kb)


  1. 1.
    Yang SY, Lin WN, Huang YL, Tien HW, Wang JY, Ma CCM, Li SM, Wang YS (2011). Carbon 49:793–803CrossRefGoogle Scholar
  2. 2.
    Pradhan B, Roy S, Srivastava SK, Saxena A (2015). J Appl Polym Sci 132:41818 (1-11)Google Scholar
  3. 3.
    Yang G, Liao Z, Yang Z, Tang Z, Guo B (2015). J Appl Polym Sci 132: 41832 (1-9)Google Scholar
  4. 4.
    Zhang H, Wang C, Zhang Y (2015). J Appl Polym Sci 132:41309 (1-7)Google Scholar
  5. 5.
    Mathur R, Chatterjee S, Singh B (2008). Compos Sci Technol 68:1608–1615CrossRefGoogle Scholar
  6. 6.
    Ismail H, Ramly A, Othman N (2013). J Appl Polym Sci 128:2433–2438CrossRefGoogle Scholar
  7. 7.
    Alhwaige AA, Herbert MM, Alhassan SM, Ishida H, Qutubuddin S, Schiraldi DA (2016). Polymer 91:180–186CrossRefGoogle Scholar
  8. 8.
    Wichmann MH, Sumfleth J, Gojny FH, Quaresimin M, Fiedler B, Schulte K (2006). Eng Fract Mech 73:2346–2359CrossRefGoogle Scholar
  9. 9.
    Godara A, Mezzo L, Luizi F, Warrier A, Lomov SV, Van Vuure A, Gorbatikh L, Moldenaers P, Verpoest I (2009). Carbon 47:2914–2923CrossRefGoogle Scholar
  10. 10.
    Anand A, Harshe R, Joshi M (2013). J Compos Mater 47:2937–2943CrossRefGoogle Scholar
  11. 11.
    Anand A, Harshe R, Joshi M (2013). J Appl Polym Sci 129:1618–1624CrossRefGoogle Scholar
  12. 12.
    Luo F, Chen L, Ning N, Wang K, Chen F, Fu Q (2012). J Appl Polym Sci 125:E348–E357CrossRefGoogle Scholar
  13. 13.
    Lubineau G, Rahaman A (2012). Carbon 50:2377–2395CrossRefGoogle Scholar
  14. 14.
    Thostenson E, Li W, Wang D, Ren Z, Chou T (2002). J Appl Phys 91:6034–6037CrossRefGoogle Scholar
  15. 15.
    Molnar K, Koakova E, Meszaros L (2014). Express Polym Lett 8:62–72Google Scholar
  16. 16.
    Zucchelli A, Focarete ML, Gualandi C, Ramakrishna S (2011). Polym Adv Technol 22:339–349CrossRefGoogle Scholar
  17. 17.
    Ramsay JDF (1986). J Coll Interf Sci 109:441–447CrossRefGoogle Scholar
  18. 18.
    Arias CB, Zaman AA, Talton J (2007). J Disp Sci Techn 28:247–254CrossRefGoogle Scholar
  19. 19.
    Patro TU, Wagner HD (2011). Nanotech 22:455706 (1-12)Google Scholar
  20. 20.
    Harikrishnan G, Singh SN, Lindsay CI, Macosko CW (2012). Green Chem 14:766–770CrossRefGoogle Scholar
  21. 21.
    Joshi YM (2007). J Chem Phys 127:081102–081108CrossRefGoogle Scholar
  22. 22.
    Alhassan SM, Qutubuddin S, Schiraldi DA (2012). Langmuir 28:4009–4015CrossRefGoogle Scholar
  23. 23.
    Hummers JWS, Offeman RE (1958). J Am Chem Soc 80:1339–1339CrossRefGoogle Scholar
  24. 24.
    Yang H, Shan C, Li F, Zhang Q, Han D, Niu L (2009). J Mater Chem 19:8856–8860CrossRefGoogle Scholar
  25. 25.
    Bortz DR, Heras EG, Martin GI (2012). Macromolecules 45:238–245CrossRefGoogle Scholar
  26. 26.
    Chouhan DK, Patro TU, Harikrishnan G, Kumar S, Gupta S, Kumar GS, Cohen H, Wagner HD (2016). Appl Clay Sci 132:105–113CrossRefGoogle Scholar
  27. 27.
    Patro TU, Wagner HD (2016). J Polym Sci B Polym Phys 54:2377–2387CrossRefGoogle Scholar
  28. 28.
    Harikrishnan G, Singh SN, Kiesel E, Macosko CW (2010). Polymer 51:3349–3353CrossRefGoogle Scholar
  29. 29.
    Martin JE, Hurd AJ (1987). J Appl Crystallogr 20:61–78CrossRefGoogle Scholar
  30. 30.
    Hurd AJ, Schaefer DW, Smith DM, Ross SB, Le MA, Spooner S (1989). Phys Rev B 39:9742–9745CrossRefGoogle Scholar
  31. 31.
    Karlsson C, Best AS, Swenson J, Kohlbrecher J, Borjesson L (2005). Macromolecules 38:6666–6671CrossRefGoogle Scholar
  32. 32.
    Fatnassi M, Solterbeck C-H, Es-Souni M (2014). RSC Adv 4:46976–46979CrossRefGoogle Scholar
  33. 33.
    Young RJ, Kinloch IA, Gong L, Novoselov KS (2012). Compos Sci Technol 72:1459–1476CrossRefGoogle Scholar
  34. 34.
    Gómez-Navarro C, Burghard M, Kern K (2008). Nano Lett 8:2045–2049CrossRefGoogle Scholar
  35. 35.
    Chen B, Evans JRG (2006). Scr Mater 54:1581–1585CrossRefGoogle Scholar
  36. 36.
    Chouhan DK, Rath SK, Kumar A, Alegaonkar P, Kumar S, Harikrishnan G, Patro TU (2015). J Mater Sci 50:7458–7472CrossRefGoogle Scholar
  37. 37.
    Abdurrahmanoglu S, Can V, Okay O (2008). J Appl Polym Sci 109:3714–3724CrossRefGoogle Scholar
  38. 38.
    Zaman I, Phan TT, Kuan HC, Meng Q, La LTB, Luong L, Youssf O, Ma J (2011). Polymer 52:1603–1611CrossRefGoogle Scholar
  39. 39.
    Putz WK, Palmeri JM, Cohn BR, Andrews R, Brinson CL (2008). Macromolecules 41:6752–6756CrossRefGoogle Scholar
  40. 40.
    Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009). Adv Funct Mater 19:2297–2302CrossRefGoogle Scholar
  41. 41.
    Fang M, Zhang Z, Li J, Zhang H, Lu H, Yang Y (2010). J Mater Chem 20:9635–9643CrossRefGoogle Scholar
  42. 42.
    Rath SK, Sudarshan K, Bhavsar RS, Kharul UK, Pujari PK, Patri M, Khakhar DV (2016). Phys Chem Chem Phys 18:1487–1499CrossRefGoogle Scholar
  43. 43.
    Rath SK, Aswal VK, Sharma C, Joshi K, Patri M, Harikrishnan G, Khakhar DV (2014). Polymer 55:5198–5210CrossRefGoogle Scholar
  44. 44.
    Velmurugan R, Mohan T (2004). J Mater Sci 39:7333–7339CrossRefGoogle Scholar
  45. 45.
    Kourkoutsaki T, Logakis E, Kroutilova I, Matejka L, Nedbal J, Pissis P (2009). J Appl Polym Sci 113:2569–2582CrossRefGoogle Scholar
  46. 46.
    Sargsyan A, Tonoyan A, Davtyan S, Schick C (2007). Eur Polym J 43:3113–3127CrossRefGoogle Scholar
  47. 47.
    Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N (2009). ACS Nano 3:3884–3890CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials EngineeringDefence Institute of Advanced TechnologyPuneIndia
  2. 2.Department of Metallurgical and Materials EngineeringIndian Institute of Technology KharagpurWest BengalIndia
  3. 3.Department of Applied PhysicsDefence Institute of Advanced TechnologyPuneIndia
  4. 4.Department of ChemistryIndian Institute of Science and Educational Research BhopalBhopalIndia
  5. 5.Polymer Division, Naval Materials Research LaboratoryDefence Research & Development Organization, AmbernathThaneIndia
  6. 6.Department of Chemical EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations