Journal of Polymer Research

, 25:57 | Cite as

Renewable eugenol-based functional polymers with self-healing and high temperature resistance properties

  • Chuanjie Cheng
  • Jin Li
  • Fanghong Yang
  • Yupeng Li
  • Zhongyu Hu
  • Jinglan Wang


A novel small molecule 1,3-bis(eugenyl) glycerol diether is synthesized from renewable eugenol and epichlorohydrin in 60% total yield, and its structure is confirmed by 1H–NMR spectrum. Then, this small molecule is utilized to prepare oligomer, linear polymer and the corresponding crosslinked polymer (denoted as P 2 ) by using thiol-ene and thiol-oxidation reactions. The polymer P 2 can form brown film on a glass substrate and can be easily put off from the substrate. Mechanical properties of P 2 show that tensile strength value is about 6 MPa, with elongation at break of around 300%. Glass transition temperature (Tg) of P 2 is −2.76 °C, meaning that P 2 is at rubber state. There are hydroxyl groups in the prepared linear polymer, which further reacts with 1,6-hexanediisocyanate (HDI) to form polyurethane P 4 with crosslinked structures. Compared with P 2 , the polyurethane P 4 forms yellow film on a glass substrate. But the film of P 4 is not so flexible as that of P 2 , presumably because of relatively higher Tg (5.85 °C) of P 4 than P 2 . Due to the existence of dynamic disulfide bonds as well as hydrogen bonds in both P 2 and P 4 , these thermoset resins show repeatable self-healing behavior stimulated by UV irradiation. Furthermore, the polyurethane P 4 exhibits ultrahigh temperature resistance performance, with Td5 = 375 °C and Td10 = 1000 °C according to TGA curve. This work is expected to expand research and potential applications of the renewable resource eugenol in preparation of smart materials.


Eugenol Thiol-ene Self-healing polymer High temperature resistance 



The work was financially supported by Natural Science Foundations of China (NO. 21564004 and 21264008) and Research Fund for Educational Commission of Jiangxi Province of China (No. GJJ150823).


  1. 1.
    Gust D, Moore TA, Moore AL (2001). Acc Chem Res 34:40–48CrossRefGoogle Scholar
  2. 2.
    Ashford DL, Gish MK, Vannucci AK, Brennaman MK, Templeton JL, Papanikolas JM, Meyer TJ (2015). Chem Rev 115:13006–13049CrossRefGoogle Scholar
  3. 3.
    Iwata T (2015). Angew Chem Int Ed 54:3210–3215CrossRefGoogle Scholar
  4. 4.
    Chen GQ, Patel MK (2012). Chem Rev 112:2082–2099CrossRefGoogle Scholar
  5. 5.
    Wilbon PA, Chu FX, Tang CB (2013). Macromol Rapid Commun 34:8–37CrossRefGoogle Scholar
  6. 6.
    Qin JL, Liu HZ, Zhang P, Wolcott M, Zhang JW (2014). Polym Int 63:760–765CrossRefGoogle Scholar
  7. 7.
    Cheng CJ, Bai XX, Liu SJ, Huang QH, Tu YM, Wu HM, Wang XJ (2013). J Polym Res 20:197CrossRefGoogle Scholar
  8. 8.
    Han YM, Yuan L, Li GY, Huang LH, Qin TF, Chu FX, Tang CB (2016). Polymer 83:92–100CrossRefGoogle Scholar
  9. 9.
    Kamatou GP, Vermaak I, Viljoen AM (2012). Molecules 17:6953–6981CrossRefGoogle Scholar
  10. 10.
    Rojo L, Vazquez B, Parra J, Bravo AL, Deb S, Roman JS (2006). Biomacromolecules 7:2751–2761CrossRefGoogle Scholar
  11. 11.
    Harvey BG, Sahagun CM, Guenthner AJ, Groshens TJ, Cambrea LR, Reams JT, Mabry JM (2014). ChemSusChem 7:1964–1969CrossRefGoogle Scholar
  12. 12.
    Yoshimura T, Shimasaki T, Teramoto N, Shibata M (2015). Eur Polym J 67:397–408CrossRefGoogle Scholar
  13. 13.
    Harvey BG, Guenthner AJ, Yandek GR, Cambrea LR, Meylemans HA, Baldwin LC, Reams JT (2014). Polymer 55:5073–5079CrossRefGoogle Scholar
  14. 14.
    Dai JY, Jiang YH, Liu XQ, Wang JG, Zhu J (2016). RSC Adv 6:17857–17866CrossRefGoogle Scholar
  15. 15.
    Deng JP, Yang BW, Chen C, Liang JY (2015). ACS Sustain Chem Eng 3:599–605CrossRefGoogle Scholar
  16. 16.
    Hu KL, Zhao DP, Wu GL, Ma JB (2015). Polym Chem 6:7138–7148CrossRefGoogle Scholar
  17. 17.
    Diesendruck CE, Sottos NR, Moore JS, White SR (2015). Angew Chem Int Ed 54:10428–10447CrossRefGoogle Scholar
  18. 18.
    Taylor DL, Panhuis M (2016). Adv Mater 28:9060–9093CrossRefGoogle Scholar
  19. 19.
    Apostolides DE, Patrickios CS, Leontidis E, Kushnir M, Wesdemiotis C (2014). Polym Int 63:1558–1565CrossRefGoogle Scholar
  20. 20.
    Zhang PF, Li GQ (2016). Prog Polym Sci 57:32–63CrossRefGoogle Scholar
  21. 21.
    Sato K, Nakajima T, Hisamatsu T, Nonoyama T, Kurokawa T, Gong JP (2015). Adv Mater 27:6990–6998CrossRefGoogle Scholar
  22. 22.
    Cheng CJ, Zhang X, Chen XH, Li J, Huang QH, Hu ZH, Tu YM (2016). J Polym Res 23:110CrossRefGoogle Scholar
  23. 23.
    Imbernon L, Norvez S (2016). Eur Polym J 82:347–376CrossRefGoogle Scholar
  24. 24.
    White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001). Nature 409:794–797CrossRefGoogle Scholar
  25. 25.
    Lu YX, Guan ZB (2012). J Am Chem Soc 134:14226–14231CrossRefGoogle Scholar
  26. 26.
    Fickert J, Makowski M, Kappl M, Landfester K, Crespy D (2012). Macromolecules 45:6324–6332CrossRefGoogle Scholar
  27. 27.
    White SR, Moore JS, Sottos NR, Krull BP, WAS C, RCR G (2014). Science 344:620–623CrossRefGoogle Scholar
  28. 28.
    Roy N, Buhler E, Lehn JM (2013). Chem Eur J 19:8814–8820CrossRefGoogle Scholar
  29. 29.
    Kiskan B, Yagci Y (2014). J Polym Sci, Part A: Polym Chem 52:2911–2918CrossRefGoogle Scholar
  30. 30.
    Rao YL, Chortos A, Pfattner R, Lissel F, Chiu YC, Feig V, Xu J, Kurosawa T, Gu XD, Wang C, He MQ, Chung JW, Bao ZN (2016). J Am Chem Soc 138:6020–6027CrossRefGoogle Scholar
  31. 31.
    Chen H, Ma X, Wu SF, Tian H (2014). Angew Chem Int Ed 53:14149–14152CrossRefGoogle Scholar
  32. 32.
    Bai N, Saito K, Simon GP (2013). Polym Chem 4:724–730CrossRefGoogle Scholar
  33. 33.
    Amamoto Y, Kamada J, Otsuka H, Takahara A, Matyjaszewski K (2011). Angew Chem Int Ed 50:1660–1663CrossRefGoogle Scholar
  34. 34.
    Lafont U, van Zeijl H, van der Zwaag S (2012). ACS Appl Mater Interfaces 4:6280–6288CrossRefGoogle Scholar
  35. 35.
    Yang WJ, Tao X, Zhao TT, Weng LX, Kang ET, Wang LH (2015). Polym Chem 6:7027–7035CrossRefGoogle Scholar
  36. 36.
    Michal BT, Jaye CA, Spencer EJ, Rowan SJ (2013). ACS Macro Lett 2:694–699CrossRefGoogle Scholar
  37. 37.
    Amamoto Y, Otsuka H, Takahara A, Matyjaszewski K (2012). Adv Mater 24:3975–3980CrossRefGoogle Scholar
  38. 38.
    Xu WM, Rong MZ, Zhang MQ (2016). J Mater Chem A 4:10683–10690CrossRefGoogle Scholar
  39. 39.
    Morfopoulou CI, Andreopoulou AK, Daletou MK, Neophytides SG, Kallitsis JK (2013). J Mater Chem A 1:1613–1622CrossRefGoogle Scholar
  40. 40.
    Xu CX, Cao YC, Kumar R, Wu X, Wang X, Scott K (2011). J Mater Chem 21:11359–11364CrossRefGoogle Scholar
  41. 41.
    Gao W, Li Z, Zhang D (2002). Oxid Met 57:99–114CrossRefGoogle Scholar
  42. 42.
    Hoyle CE, Bowman CN (2010). Angew Chem Int Ed 49:1540–1573CrossRefGoogle Scholar
  43. 43.
    Yu L, Wang LH, Hu ZT, You YZ, Wu DC, Hong CY (2015). Polym Chem 6:1527–1532CrossRefGoogle Scholar
  44. 44.
    Hong M, Liu SR, Li BX, Li YS (2012). J Polym Sci, Part A: Polym Chem 50:2499–2506CrossRefGoogle Scholar
  45. 45.
    Cheng ZY, Zhang JF, Ballou DP, Williams CH (2011). Chem Rev 111:5768–5783CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringJiangxi Science and Technology Normal UniversityNanchangPeople’s Republic of China

Personalised recommendations