Skip to main content

Advertisement

Log in

Renewable eugenol-based functional polymers with self-healing and high temperature resistance properties

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel small molecule 1,3-bis(eugenyl) glycerol diether is synthesized from renewable eugenol and epichlorohydrin in 60% total yield, and its structure is confirmed by 1H–NMR spectrum. Then, this small molecule is utilized to prepare oligomer, linear polymer and the corresponding crosslinked polymer (denoted as P 2 ) by using thiol-ene and thiol-oxidation reactions. The polymer P 2 can form brown film on a glass substrate and can be easily put off from the substrate. Mechanical properties of P 2 show that tensile strength value is about 6 MPa, with elongation at break of around 300%. Glass transition temperature (Tg) of P 2 is −2.76 °C, meaning that P 2 is at rubber state. There are hydroxyl groups in the prepared linear polymer, which further reacts with 1,6-hexanediisocyanate (HDI) to form polyurethane P 4 with crosslinked structures. Compared with P 2 , the polyurethane P 4 forms yellow film on a glass substrate. But the film of P 4 is not so flexible as that of P 2 , presumably because of relatively higher Tg (5.85 °C) of P 4 than P 2 . Due to the existence of dynamic disulfide bonds as well as hydrogen bonds in both P 2 and P 4 , these thermoset resins show repeatable self-healing behavior stimulated by UV irradiation. Furthermore, the polyurethane P 4 exhibits ultrahigh temperature resistance performance, with Td5 = 375 °C and Td10 = 1000 °C according to TGA curve. This work is expected to expand research and potential applications of the renewable resource eugenol in preparation of smart materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Gust D, Moore TA, Moore AL (2001). Acc Chem Res 34:40–48

    Article  CAS  Google Scholar 

  2. Ashford DL, Gish MK, Vannucci AK, Brennaman MK, Templeton JL, Papanikolas JM, Meyer TJ (2015). Chem Rev 115:13006–13049

    Article  CAS  Google Scholar 

  3. Iwata T (2015). Angew Chem Int Ed 54:3210–3215

    Article  CAS  Google Scholar 

  4. Chen GQ, Patel MK (2012). Chem Rev 112:2082–2099

    Article  CAS  Google Scholar 

  5. Wilbon PA, Chu FX, Tang CB (2013). Macromol Rapid Commun 34:8–37

    Article  CAS  Google Scholar 

  6. Qin JL, Liu HZ, Zhang P, Wolcott M, Zhang JW (2014). Polym Int 63:760–765

    Article  CAS  Google Scholar 

  7. Cheng CJ, Bai XX, Liu SJ, Huang QH, Tu YM, Wu HM, Wang XJ (2013). J Polym Res 20:197

    Article  Google Scholar 

  8. Han YM, Yuan L, Li GY, Huang LH, Qin TF, Chu FX, Tang CB (2016). Polymer 83:92–100

    Article  CAS  Google Scholar 

  9. Kamatou GP, Vermaak I, Viljoen AM (2012). Molecules 17:6953–6981

    Article  CAS  Google Scholar 

  10. Rojo L, Vazquez B, Parra J, Bravo AL, Deb S, Roman JS (2006). Biomacromolecules 7:2751–2761

    Article  CAS  Google Scholar 

  11. Harvey BG, Sahagun CM, Guenthner AJ, Groshens TJ, Cambrea LR, Reams JT, Mabry JM (2014). ChemSusChem 7:1964–1969

    Article  CAS  Google Scholar 

  12. Yoshimura T, Shimasaki T, Teramoto N, Shibata M (2015). Eur Polym J 67:397–408

    Article  CAS  Google Scholar 

  13. Harvey BG, Guenthner AJ, Yandek GR, Cambrea LR, Meylemans HA, Baldwin LC, Reams JT (2014). Polymer 55:5073–5079

    Article  CAS  Google Scholar 

  14. Dai JY, Jiang YH, Liu XQ, Wang JG, Zhu J (2016). RSC Adv 6:17857–17866

    Article  CAS  Google Scholar 

  15. Deng JP, Yang BW, Chen C, Liang JY (2015). ACS Sustain Chem Eng 3:599–605

    Article  CAS  Google Scholar 

  16. Hu KL, Zhao DP, Wu GL, Ma JB (2015). Polym Chem 6:7138–7148

    Article  CAS  Google Scholar 

  17. Diesendruck CE, Sottos NR, Moore JS, White SR (2015). Angew Chem Int Ed 54:10428–10447

    Article  CAS  Google Scholar 

  18. Taylor DL, Panhuis M (2016). Adv Mater 28:9060–9093

    Article  CAS  Google Scholar 

  19. Apostolides DE, Patrickios CS, Leontidis E, Kushnir M, Wesdemiotis C (2014). Polym Int 63:1558–1565

    Article  CAS  Google Scholar 

  20. Zhang PF, Li GQ (2016). Prog Polym Sci 57:32–63

    Article  CAS  Google Scholar 

  21. Sato K, Nakajima T, Hisamatsu T, Nonoyama T, Kurokawa T, Gong JP (2015). Adv Mater 27:6990–6998

    Article  CAS  Google Scholar 

  22. Cheng CJ, Zhang X, Chen XH, Li J, Huang QH, Hu ZH, Tu YM (2016). J Polym Res 23:110

    Article  Google Scholar 

  23. Imbernon L, Norvez S (2016). Eur Polym J 82:347–376

    Article  CAS  Google Scholar 

  24. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001). Nature 409:794–797

    Article  CAS  Google Scholar 

  25. Lu YX, Guan ZB (2012). J Am Chem Soc 134:14226–14231

    Article  CAS  Google Scholar 

  26. Fickert J, Makowski M, Kappl M, Landfester K, Crespy D (2012). Macromolecules 45:6324–6332

    Article  CAS  Google Scholar 

  27. White SR, Moore JS, Sottos NR, Krull BP, WAS C, RCR G (2014). Science 344:620–623

    Article  CAS  Google Scholar 

  28. Roy N, Buhler E, Lehn JM (2013). Chem Eur J 19:8814–8820

    Article  CAS  Google Scholar 

  29. Kiskan B, Yagci Y (2014). J Polym Sci, Part A: Polym Chem 52:2911–2918

    Article  CAS  Google Scholar 

  30. Rao YL, Chortos A, Pfattner R, Lissel F, Chiu YC, Feig V, Xu J, Kurosawa T, Gu XD, Wang C, He MQ, Chung JW, Bao ZN (2016). J Am Chem Soc 138:6020–6027

    Article  CAS  Google Scholar 

  31. Chen H, Ma X, Wu SF, Tian H (2014). Angew Chem Int Ed 53:14149–14152

    Article  CAS  Google Scholar 

  32. Bai N, Saito K, Simon GP (2013). Polym Chem 4:724–730

    Article  CAS  Google Scholar 

  33. Amamoto Y, Kamada J, Otsuka H, Takahara A, Matyjaszewski K (2011). Angew Chem Int Ed 50:1660–1663

    Article  CAS  Google Scholar 

  34. Lafont U, van Zeijl H, van der Zwaag S (2012). ACS Appl Mater Interfaces 4:6280–6288

    Article  CAS  Google Scholar 

  35. Yang WJ, Tao X, Zhao TT, Weng LX, Kang ET, Wang LH (2015). Polym Chem 6:7027–7035

    Article  CAS  Google Scholar 

  36. Michal BT, Jaye CA, Spencer EJ, Rowan SJ (2013). ACS Macro Lett 2:694–699

    Article  CAS  Google Scholar 

  37. Amamoto Y, Otsuka H, Takahara A, Matyjaszewski K (2012). Adv Mater 24:3975–3980

    Article  CAS  Google Scholar 

  38. Xu WM, Rong MZ, Zhang MQ (2016). J Mater Chem A 4:10683–10690

    Article  CAS  Google Scholar 

  39. Morfopoulou CI, Andreopoulou AK, Daletou MK, Neophytides SG, Kallitsis JK (2013). J Mater Chem A 1:1613–1622

    Article  CAS  Google Scholar 

  40. Xu CX, Cao YC, Kumar R, Wu X, Wang X, Scott K (2011). J Mater Chem 21:11359–11364

    Article  CAS  Google Scholar 

  41. Gao W, Li Z, Zhang D (2002). Oxid Met 57:99–114

    Article  CAS  Google Scholar 

  42. Hoyle CE, Bowman CN (2010). Angew Chem Int Ed 49:1540–1573

    Article  CAS  Google Scholar 

  43. Yu L, Wang LH, Hu ZT, You YZ, Wu DC, Hong CY (2015). Polym Chem 6:1527–1532

    Article  CAS  Google Scholar 

  44. Hong M, Liu SR, Li BX, Li YS (2012). J Polym Sci, Part A: Polym Chem 50:2499–2506

    Article  CAS  Google Scholar 

  45. Cheng ZY, Zhang JF, Ballou DP, Williams CH (2011). Chem Rev 111:5768–5783

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by Natural Science Foundations of China (NO. 21564004 and 21264008) and Research Fund for Educational Commission of Jiangxi Province of China (No. GJJ150823).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanjie Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, C., Li, J., Yang, F. et al. Renewable eugenol-based functional polymers with self-healing and high temperature resistance properties. J Polym Res 25, 57 (2018). https://doi.org/10.1007/s10965-018-1460-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1460-3

Keywords

Navigation