Skip to main content
Log in

Control of morphology and performance of diketopyrrolopyrrole-based electrochromic polymers using solvent vapor annealing

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Post-deposition treatment including thermal and solvent annealing of polymer films in various organic electronics such as organic photovoltaics and organic thin film transistors plays a vital role in governing the film morphology and consequently their optical and electronic properties. However, such a post-treatment method has yet been used for electrochromics. This paper studied the influence of solvent vapor annealing of a diketopyrrolopyrrole-containing electrochromic conjugated polymer on its film morphology. Compared to an un-annealed film, the films exposed to acetone vapor and chloroform vapor are generally composed of polymer clusters with smaller domain sizes and more compact, aggregated structures. Subsequent evaluation of the electrochromic performances of the devices revealed the strong influence of the film morphologies on the optical contrasts, switching times and coloration efficiencies. In general, the electrochromic films treated with a poor solvent (acetone) exhibited faster switching speeds and improved coloration efficiencies. In contrast, treatment with a good solvent (chloroform) had destructive effects on the optical contrasts, switching speeds and coloration efficiency of the films. These findings showed that the electrochromic performance closely corresponded to changes in the film structure and morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ming S, Zhen S, Lin K, Zhao L, Xu J, Lu B (2015) Thiadiazolo[3,4-c]pyridine as an acceptor toward fast-switching green donor–acceptor-type electrochromic polymer with low bandgap. ACS Appl Mater Interfaces 7:11089–11098

    Article  CAS  Google Scholar 

  2. Karabay B, Pekel LC, Cihaner A (2015) A pure blue to highly Transmissive electrochromic polymer based on poly(3,4-propylenedioxyselenophene) with a high optical contrast ratio. Macromolecules 48:1352–1357

    Article  CAS  Google Scholar 

  3. Atakan G, Gunbas G (2016) A novel red to transmissive electrochromic polymer based on phenanthrocarbazole. RSC Adv 6:25620–25623

    Article  CAS  Google Scholar 

  4. He B, Neo WT, Chen TL, Klivansky LM, Wang H, Tan T, Teat SJ, Xu J, Liu Y (2016) Low bandgap conjugated polymers based on a nature-inspired bay-annulated indigo (BAI) acceptor as stable electrochromic materials. ACS Sustain Chem Eng 4:2797–2805

    Article  CAS  Google Scholar 

  5. Neo WT, Ye Q, Chua S-J, Xu J (2016) Conjugated polymer-based electrochromics: materials, device fabrication and application prospects. J Mater Chem C 4:7364–7376

    Article  CAS  Google Scholar 

  6. Neo WT, Cho CM, Shi Z, Chua S-J, Xu J (2016) Modulating high-energy visible light absorption to attain neutral-state black electrochromic polymers. J Mater Chem C 4:28–32

    Article  CAS  Google Scholar 

  7. Cho CM, Ye Q, Neo WT, Lin T, Lu X, Xu J (2015) Ultrahigh electron-deficient pyrrolo-acenaphtho-pyridazine-dione based donor-acceptor conjugated polymers for electrochromic applications. Polym Chem 6:7570–7579

    Article  CAS  Google Scholar 

  8. Ye Q, Neo WT, Lin T, Song J, Yan H, Zhou H, Shah KW, Chua SJ, Xu J (2015) Pyrrolophthalazine dione (PPD)-based donor-acceptor polymers as high performance electrochromic materials. Polym Chem 6:1487–1494

    Article  CAS  Google Scholar 

  9. Ye Q, Neo WT, Cho CM, Yang SW, Lin T, Zhou H, Yan H, Lu X, Chi C, Xu J (2014) Synthesis of Ultrahighly electron-deficient Pyrrolo[3,4-d]pyridazine-5,7-dione by inverse electron demand Diels–Alder reaction and its application as electrochromic materials. Org Lett 16:6386–6389

    Article  CAS  Google Scholar 

  10. Cho CM, Ye Q, Neo WT, Lin T, Song J, Lu X, Xu J (2015) Red-to-black electrochromism of 4,9-dihydro-s-indaceno[1,2-b:5,6-b’]dithiophene-embedded conjugated polymers. J Mater Sci 50:5856–5864

    Article  CAS  Google Scholar 

  11. Wang J, Yan H, Lu Y (2015) The thiophene derivative with ferricyanide end group and its polymers: synthesis and electrochromic performance. J Mater Sci 50:6920–6925

    Article  CAS  Google Scholar 

  12. Coskun Y, Cirpan A, Toppare L (2007) Construction of electrochromic devices using thiophene based conducting polymers. J Mater Sci 42:368–372

    Article  CAS  Google Scholar 

  13. Goldie DM (2008) Transient bleaching pulse shapes in electrochromic polysiloxane thin films. J Mater Sci 43:1818–1824

    Article  CAS  Google Scholar 

  14. Lakshmanan R, Raja PP, Shivaprakash NC, Sindhu S (2016) Fabrication of fast switching electrochromic window based on poly(3,4-(2,2-dimethylpropylenedioxy)thiophene) thin film. J Mater Sci Mater Electron 27:6035–6042

    Article  CAS  Google Scholar 

  15. Ji Y, Niu H, Zhang H, Wu W, Cai J, Wang C, Bai X, Wang W (2014) Synthesis and electrochromic properties of polybismaleimides containing triphenylamine units. J Solid State Electrochem 18:1537–1544

    Article  CAS  Google Scholar 

  16. Remmele J, Shen DE, Mustonen T, Fruehauf N (2015) High performance and long-term stability in Ambiently fabricated segmented solid-state polymer electrochromic displays. ACS Appl Mater Interfaces 7:12001–12008

    Article  CAS  Google Scholar 

  17. Chandrasekhar P, Zay BJ, Cai C, Chai Y, Lawrence D (2014) Matched-dual-polymer electrochromic lenses, using new cathodically coloring conducting polymers, with exceptional performance and incorporated into automated sunglasses. J Appl Polym Sci 131:41043

    Google Scholar 

  18. Österholm AM, Shen DE, Kerszulis JA, Bulloch RH, Kuepfert M, Dyer AL, Reynolds JR (2015) Four shades of Brown: tuning of electrochromic polymer blends toward high-contrast eyewear. ACS Appl Mater Interfaces 7:1413–1421

    Article  Google Scholar 

  19. Yu H, Shao S, Yan L, Meng H, He Y, Yao C, Xu P, Zhang X, Hu W, Huang W (2016) Side-chain engineering of green color electrochromic polymer materials: toward adaptive camouflage application. J Mater Chem C 4:2269–2273

    Article  CAS  Google Scholar 

  20. Jensen J, Hösel M, Kim I, Yu J-S, Jo J, Krebs FC (2014) Fast switching ITO free electrochromic devices. Adv Funct Mater 24:1228–1233

    Article  CAS  Google Scholar 

  21. Xu T, Walter EC, Agrawal A, Bohn C, Velmurugan J, Zhu W, Lezec HJ, Talin AA (2016) High-contrast and fast electrochromic switching enabled by plasmonics. Nat Commun 7:10479

    Article  CAS  Google Scholar 

  22. Eric Shen D, Osterholm AM, Reynolds JR (2015) Out of sight but not out of mind: the role of counter electrodes in polymer-based solid-state electrochromic devices. J Mater Chem C 3:9715–9725

    Article  CAS  Google Scholar 

  23. Kuno T, Matsumura Y, Nakabayashi K, Atobe M (2016) Electroresponsive structurally colored materials: a combination of structural and electrochromic effects. Angew Chem Int Ed 55:2503–2506

    Article  CAS  Google Scholar 

  24. Otley MT, Alamer FA, Zhu Y, Singhaviranon A, Zhang X, Li M, Kumar A, Sotzing GA (2014) Acrylated poly(3,4-propylenedioxythiophene) for enhancement of lifetime and optical properties for single-layer electrochromic devices. ACS Appl Mater Interfaces 6:1734–1739

    Article  CAS  Google Scholar 

  25. Huang Y, Kramer EJ, Heeger AJ, Bazan GC (2014) Bulk heterojunction solar cells: morphology and performance relationships. Chem Rev 114:7006–7043

    Article  CAS  Google Scholar 

  26. Scharber MC, Sariciftci NS (2013) Efficiency of bulk-heterojunction organic solar cells. Prog Polym Sci 38:1929–1940

    Article  CAS  Google Scholar 

  27. Shao W, Dong H, Jiang L, Hu W (2011) Morphology control for high performance organic thin film transistors. Chem Sci 2:590–600

    Article  CAS  Google Scholar 

  28. Caria S, Como ED, Murgia M, Zamboni R, Melpignano P, Biondo V (2006) Enhanced light emission efficiency and current stability by morphology control and thermal annealing of organic light emitting diode devices. J Phys Condens Matter 18:S2139

    Article  CAS  Google Scholar 

  29. Yoon Y, Lee H, Kim T, Kim K, Choi S, Yoo HK, Friedman B, Lee K (2013) Post-annealing effect on the interface morphology and current efficiency of organic light-emitting diodes. Solid State Electron 79:45–49

    Article  Google Scholar 

  30. Lv H, Zhao X, Xu W, Li H, Chen J, Yang X (2013) Improving performance of polymer solar cells based on PSBTBT/PC71BM via controlled solvent vapor annealing. Org Electron 14:1874–1881

    Article  CAS  Google Scholar 

  31. Gholamkhass B, Servati P (2013) Solvent–vapor induced morphology reconstruction for efficient PCDTBT based polymer solar cells. Org Electron 14:2278–2283

    Article  CAS  Google Scholar 

  32. Huang Y-C, Chia H-C, Chuang C-M, Tsao C-S, Chen C-Y, Su W-F (2013) Facile hot solvent vapor annealing for high performance polymer solar cell using spray process. Sol Energy Mater Sol Cells 114:24–30

    Article  CAS  Google Scholar 

  33. S.R. Puniredd, W. Pisula, K. Müllen, 2 - Influence of film morphology on optical and electronic properties of organic materials A2 - Ostroverkhova, Oksana, Handbook of Organic Materials for Optical and (Opto)electronic Devices, Woodhead Publishing 2013, pp. 83–101

  34. Wessendorf CD, Schulz GL, Mishra A, Kar P, Ata I, Weidelener M, Urdanpilleta M, Hanisch J, Mena-Osteritz E, Lindén M, Ahlswede E, Bäuerle P (2014) Efficiency improvement of solution-processed Dithienopyrrole-based A-D-A Oligothiophene bulk-heterojunction solar cells by solvent vapor annealing. Adv Energy Mater 4:1400266

    Article  Google Scholar 

  35. Miao J, Chen H, Liu F, Zhao B, Hu L, He Z, Wu H (2015) Efficiency enhancement in solution-processed organic small molecule: fullerene solar cells via solvent vapor annealing. Appl Phys Lett 106:183302

    Article  Google Scholar 

  36. Dickey KC, Anthony JE, Loo YL (2006) Improving organic thin-film transistor performance through solvent-vapor annealing of solution-Processable Triethylsilylethynyl Anthradithiophene. Adv Mater 18:1721–1726

    Article  CAS  Google Scholar 

  37. Kang S-J, Song S, Liu C, Kim D-Y, Noh Y-Y (2014) Evolution in crystal structure and electrical performance of thiophene-based polymer field effect transistors: a remarkable difference between thermal and solvent vapor annealing. Org Electron 15:1972–1982

    Article  CAS  Google Scholar 

  38. Liang J, Zhong W, Ying L, Yang W, Peng J, Cao Y (2015) The effects of solvent vapor annealing on the performance of blue polymer light-emitting diodes. Org Electron 27:1–6

    Article  CAS  Google Scholar 

  39. Huang J-H, Yang C-Y, Hsu C-Y, Chen C-L, Lin L-Y, Wang R-R, Ho K-C, Chu C-W (2009) Solvent-annealing-induced self-Organization of Poly(3-hexylthiophene), a high-performance electrochromic material. ACS Appl Mater Interfaces 1:2821–2828

    Article  CAS  Google Scholar 

  40. Neo WT, Shi Z, Cho CM, Chua S-J, Xu J (2015) Effects of chemical composition, film thickness, and morphology on the electrochromic properties of donor–acceptor conjugated copolymers based on Diketopyrrolopyrrole. Chem Plus Chem 80:1298–1305

    CAS  Google Scholar 

  41. Verploegen E, Miller CE, Schmidt K, Bao Z, Toney MF (2012) Manipulating the morphology of P3HT–PCBM bulk heterojunction blends with solvent vapor annealing. Chem Mater 24:3923–3931

    Article  CAS  Google Scholar 

  42. De Luca G, Treossi E, Liscio A, Mativetsky JM, Scolaro LM, Palermo V, Samori P (2010) Solvent vapour annealing of organic thin films: controlling the self-assembly of functional systems across multiple length scales. J Mater Chem 20:2493–2498

    Article  Google Scholar 

  43. Goh T, Huang J-S, Bartolome B, Sfeir MY, Vaisman M, Lee ML, Taylor AD (2015) Panchromatic polymer-polymer ternary solar cells enhanced by Forster resonance energy transfer and solvent vapor annealing. J Mater Chem A 3:18611–18621

    Article  CAS  Google Scholar 

  44. Padilla J, Österholm AM, Dyer AL, Reynolds JR (2015) Process controlled performance for soluble electrochromic polymers. Sol Energy Mater Sol Cells 140:54–60

    Article  CAS  Google Scholar 

  45. Somani PR, Radhakrishnan S (2003) Electrochromic materials and devices: present and future. Mater Chem Phys 77:117–133

    Article  CAS  Google Scholar 

  46. Jung B, Kim K, Eom Y, Kim W (2015) High-pressure solvent vapor annealing with a benign solvent to rapidly enhance the performance of organic photovoltaics. ACS Appl Mater Interfaces 7:13342–13349

    Article  CAS  Google Scholar 

  47. Liu C, Khim D, Noh Y-Y (2014) Organic field-effect transistors by a solvent vapor annealing process. J Nanosci Nanotechnol 14:1476–1493

    Article  CAS  Google Scholar 

  48. Liu Y, Shi Q, Dong H, Tan J, Hu W, Zhan X (2012) Solvent-vapor induced self-assembly of a conjugated polymer: a correlation between solvent nature and transistor performance. Org Electron 13:2372–2378

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Agency for Science, Technology and Research (A*STAR) and Ministry of National Development (MND) Green Building Joint Grant (No. 1321760011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neo, W.T., Ye, Q., Shi, Z. et al. Control of morphology and performance of diketopyrrolopyrrole-based electrochromic polymers using solvent vapor annealing. J Polym Res 25, 68 (2018). https://doi.org/10.1007/s10965-018-1458-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1458-x

Keywords

Navigation