Skip to main content
Log in

Coarse-grained modelling of self-assembling poly(ethylene glycol)/poly(lactic acid) diblock copolymers

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

An implicit-solvent coarse-grained model for poly(ethylene glycol)/poly(lactic acid) (PEG/PLA) diblock copolymer is derived using the iterative Boltzmann inversion technique. The model is shown to be effective in reproducing the micellar core-shell structure of PEG/PLA diblock copolymer recently reported in experiments. Influence of block architecture on the aggregate morphology is investigated. Upon increasing the length of PLA block, the model predicts a morphological change from conventional spherical to anisotropic (e.g., lamellar or cylindrical) structure, in agreement with experimental findings. The current model is also noted to provide very rapid aggregation of the block copolymers, allowing observation of copolymer micelles in their equilibrium structures in a short simulation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nair LS, Laurencin CT (2007). Prog Polym Sci 32(8–9):762–798

    Article  CAS  Google Scholar 

  2. Lendlein A, Langer R (2002). Science 296(5573):1673–1676

    Article  Google Scholar 

  3. Martina M, Hutmacher DW (2007). Polym Int 56(2):145–157

    Article  CAS  Google Scholar 

  4. Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012). Prog Polym Sci 37(2):237–280

    Article  CAS  Google Scholar 

  5. Gaucher G, Satturwar P, Jones M-C, Furtos A, Leroux J-C (2010). Eur J Pharm Biopharm 76(2):147–158

    Article  CAS  Google Scholar 

  6. Xiong X-B, Falamarzian A, Garg SM, Lavasanifar A (2011). J Control Release 155(2):248–261

    Article  CAS  Google Scholar 

  7. Wuang SC, Neoh KG, Kang E-T, Leckband DE, Pack DW (2011). AICHE Journal 57(6):1638–1645

    Article  CAS  Google Scholar 

  8. Zhang Z, Chen X, Chen L, Yu S, Cao Y, He C, Chen X (2013). ACS Appl Mater Interfaces 5(21):10760–10766

    Article  CAS  Google Scholar 

  9. Yang YQ, Lin WJ, Zhao B, Wen XF, Guo XD, Zhang LJ (2012). Langmuir 28(21):8251–8259

    Article  CAS  Google Scholar 

  10. Yang L, Wu X, Liu F, Duan Y, Li S (2009). Pharm Res 26(10):2332–2342

    Article  CAS  Google Scholar 

  11. Jeong B, Bae YH, Lee DS, Kim SW (1997). Nature 388(6645):860–862

    Article  CAS  Google Scholar 

  12. Wu X, El Ghzaoui A, Li S (2011). Langmuir 27(13):8000–8008

    Article  CAS  Google Scholar 

  13. Wu X, Li S, Coumes F, Darcos V, Him JLK, Bron P (2013). Nanoscale 5(19):9010–9017

    Article  CAS  Google Scholar 

  14. Nguyen TBT, Li S, Deratani A (2015). Int J Pharm 495(1):154–161

    Article  CAS  Google Scholar 

  15. Ma C, Pan P, Shan G, Bao Y, Fujita M, Maeda M (2015). Langmuir 31(4):1527–1536

    Article  CAS  Google Scholar 

  16. Discher DE, Ortiz V, Srinivas G, Klein ML, Kim Y, Christian D, Cai S, Photos P, Ahmed F (2007). Prog Polym Sci 32(8–9):838–857

    Article  CAS  Google Scholar 

  17. Anderson PM, Wilson MR (2004). J Chem Phys 121(17):8503–8510

    Article  CAS  Google Scholar 

  18. Srinivas G, Discher DE, Klein ML (2004). Nat Mater 3(9):638–644

    Article  CAS  Google Scholar 

  19. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007). J Phys Chem B 111(27):7812–7824

    Article  CAS  Google Scholar 

  20. Ortiz V, Nielsen SO, Klein ML, Discher DE (2006). J Polym Sci B Polym Phys 44(14):1907–1918

    Article  CAS  Google Scholar 

  21. Reith D, Putz M, Muller-Plathe F (2003). J Comput Chem 24(13):1624–1636

    Article  CAS  Google Scholar 

  22. Noid WG, Chu JW, Ayton GS, Krishna V, Izvekov S, Voth GA, Das A, Andersen HC (2008). J Chem Phys 128(24)

  23. Jusufi A, Hynninen AP, Panagiotopoulos AZ (2008). J Phys Chem B 112(44):13783–13792

    Article  CAS  Google Scholar 

  24. Jusufi A, Sanders S, Klein ML, Panagiotopoulos AZ (2011). J Phys Chem B 115(5):990–1001

    Article  CAS  Google Scholar 

  25. Dey S, Saha J (2017) Phys Rev E 95(2–1):023315

  26. Wang SH, Larson RG (2015). Macromolecules 48(20):7709–7718

    Article  CAS  Google Scholar 

  27. Wu CF (2016). Macromolecular Theory and Simulations 25(4):336–347

    Article  CAS  Google Scholar 

  28. Chen C-W, Huang C-I (2015). Polymer 77:189–198

    Article  CAS  Google Scholar 

  29. Wang QF, Suraweera NS, Keffer DJ, Deng SX, Mays J (2012). Macromolecules 45(16):6669–6685

    Article  CAS  Google Scholar 

  30. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008). J Chem Theory Comput 4(3):435–447

    Article  CAS  Google Scholar 

  31. McAliley JH, Bruce DA (2011). J Chem Theory Comput 7(11):3756–3767

    Article  CAS  Google Scholar 

  32. Anderson PM, Wilson MR (2005). Mol Phy 103(1):89–97

    Article  CAS  Google Scholar 

  33. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996). J Am Chem Soc 118(45):11225–11236

    Article  CAS  Google Scholar 

  34. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001). J Phys Chem B 105(28):6474–6487

    Article  CAS  Google Scholar 

  35. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983). J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  36. Hockney RW, Goel SP, Eastwood JW (1974). J Comput Phys 14(2):148–158

    Article  Google Scholar 

  37. Nose S (2002). Mol Phys 100(1):191–198

    Article  Google Scholar 

  38. Hoover WG (1985). Phys Rev A 31(3):1695–1697

    Article  CAS  Google Scholar 

  39. Parrinello M, Rahman A (1981). J Appl Phys 52(12):7182–7190

    Article  CAS  Google Scholar 

  40. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995). J Chem Phys 103(19):8577–8593

    Article  CAS  Google Scholar 

  41. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997). J Comput Chem 18(12):1463–1472

    Article  CAS  Google Scholar 

  42. Riley T, Stolnik S, Heald CR, Xiong CD, Garnett MC, Illum L, Davis SS, Purkiss SC, Barlow RJ, Gellert PR (2001). Langmuir 17(11):3168–3174

    Article  CAS  Google Scholar 

  43. Yang L, Qi X, Liu P, El Ghzaoui A, Li S (2010). Int J Pharm 394(1–2):43–49

    Article  CAS  Google Scholar 

  44. Humphrey W, Dalke A, Schulten K (1996). J Mol Graph 14(1):33–38

    Article  CAS  Google Scholar 

  45. Prasitnok K, Wilson MR (2013). Phys Chem Chem Phys 15(40):17093–17104

    Article  CAS  Google Scholar 

  46. Prasitnok K (2016). J Polym Res 23(7):1–9

    Article  CAS  Google Scholar 

  47. Rossi G, Fuchs PFJ, Barnoud J, Monticelli L (2012). J Phys Chem B 116(49):14353–14362

    Article  CAS  Google Scholar 

  48. Holder SJ, Sommerdijk NAJM (2011). Polym Chem 2(5):1018–1028

    Article  CAS  Google Scholar 

  49. Blanazs A, Armes SP, Ryan AJ (2009). Macromol Rapid Commun 30(4–5):267–277

    Article  CAS  Google Scholar 

  50. Srivastava S, Andreev M, Levi AE, Goldfeld DJ, Mao J, Heller WT, Prabhu VM, de Pablo JJ, Tirrell MV (2017). Nat Commun 8:14131

    Article  Google Scholar 

  51. Wu X, El Ghzaoui A, Li S (2012). J Colloid Interface Sci 374(1):127–134

    Article  CAS  Google Scholar 

  52. Fujiwara T, Kimura Y (2002). Macromol Biosci 2(1):11–23

    Article  CAS  Google Scholar 

  53. Amann M, Willner L, Stellbrink J, Radulescu A, Richter D (2015). Soft Matter 11(21):4208–4217

    Article  CAS  Google Scholar 

  54. Puaud F, Nicolai T, Nicol E, Benyahia L, Brotons G (2013) Phys Rev Lett 110 (2)

  55. Puaud F, Nicolai T, Benyahia L, Nicol E (2013). J Phys Chem B 117(40):12312–12318

    Article  CAS  Google Scholar 

  56. Agrawal SK, Sanabria-DeLong N, Tew GN, Bhatia SR (2008). Macromolecules 41(5):1774–1784

    Article  CAS  Google Scholar 

  57. Greenall MJ, Buzza DMA, McLeish TCB (2009). J Chem Phys 131(3)

  58. Zhulina EB, Borisov OV (2012). Macromolecules 45(11):4429–4440

    Article  CAS  Google Scholar 

  59. Liaw CY, Henderson KJ, Burghardt WR, Wang J, Shull KR (2015). Macromolecules 48(1):173–183

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate very much the financial support from Mahasarakham University (grant year 2015). The Center of Excellence for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education Commission, Ministry of Education, Thailand is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khongvit Prasitnok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasitnok, K. Coarse-grained modelling of self-assembling poly(ethylene glycol)/poly(lactic acid) diblock copolymers. J Polym Res 25, 69 (2018). https://doi.org/10.1007/s10965-018-1457-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1457-y

Keywords

Navigation