Coarse-grained modelling of self-assembling poly(ethylene glycol)/poly(lactic acid) diblock copolymers

  • Khongvit Prasitnok


An implicit-solvent coarse-grained model for poly(ethylene glycol)/poly(lactic acid) (PEG/PLA) diblock copolymer is derived using the iterative Boltzmann inversion technique. The model is shown to be effective in reproducing the micellar core-shell structure of PEG/PLA diblock copolymer recently reported in experiments. Influence of block architecture on the aggregate morphology is investigated. Upon increasing the length of PLA block, the model predicts a morphological change from conventional spherical to anisotropic (e.g., lamellar or cylindrical) structure, in agreement with experimental findings. The current model is also noted to provide very rapid aggregation of the block copolymers, allowing observation of copolymer micelles in their equilibrium structures in a short simulation time.


Coarse-grained simulations poly(ethylene glycol) poly(lactic acid) Copolymer micelles 



We appreciate very much the financial support from Mahasarakham University (grant year 2015). The Center of Excellence for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education Commission, Ministry of Education, Thailand is also acknowledged.


  1. 1.
    Nair LS, Laurencin CT (2007). Prog Polym Sci 32(8–9):762–798CrossRefGoogle Scholar
  2. 2.
    Lendlein A, Langer R (2002). Science 296(5573):1673–1676CrossRefGoogle Scholar
  3. 3.
    Martina M, Hutmacher DW (2007). Polym Int 56(2):145–157CrossRefGoogle Scholar
  4. 4.
    Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012). Prog Polym Sci 37(2):237–280CrossRefGoogle Scholar
  5. 5.
    Gaucher G, Satturwar P, Jones M-C, Furtos A, Leroux J-C (2010). Eur J Pharm Biopharm 76(2):147–158CrossRefGoogle Scholar
  6. 6.
    Xiong X-B, Falamarzian A, Garg SM, Lavasanifar A (2011). J Control Release 155(2):248–261CrossRefGoogle Scholar
  7. 7.
    Wuang SC, Neoh KG, Kang E-T, Leckband DE, Pack DW (2011). AICHE Journal 57(6):1638–1645CrossRefGoogle Scholar
  8. 8.
    Zhang Z, Chen X, Chen L, Yu S, Cao Y, He C, Chen X (2013). ACS Appl Mater Interfaces 5(21):10760–10766CrossRefGoogle Scholar
  9. 9.
    Yang YQ, Lin WJ, Zhao B, Wen XF, Guo XD, Zhang LJ (2012). Langmuir 28(21):8251–8259CrossRefGoogle Scholar
  10. 10.
    Yang L, Wu X, Liu F, Duan Y, Li S (2009). Pharm Res 26(10):2332–2342CrossRefGoogle Scholar
  11. 11.
    Jeong B, Bae YH, Lee DS, Kim SW (1997). Nature 388(6645):860–862CrossRefGoogle Scholar
  12. 12.
    Wu X, El Ghzaoui A, Li S (2011). Langmuir 27(13):8000–8008CrossRefGoogle Scholar
  13. 13.
    Wu X, Li S, Coumes F, Darcos V, Him JLK, Bron P (2013). Nanoscale 5(19):9010–9017CrossRefGoogle Scholar
  14. 14.
    Nguyen TBT, Li S, Deratani A (2015). Int J Pharm 495(1):154–161CrossRefGoogle Scholar
  15. 15.
    Ma C, Pan P, Shan G, Bao Y, Fujita M, Maeda M (2015). Langmuir 31(4):1527–1536CrossRefGoogle Scholar
  16. 16.
    Discher DE, Ortiz V, Srinivas G, Klein ML, Kim Y, Christian D, Cai S, Photos P, Ahmed F (2007). Prog Polym Sci 32(8–9):838–857CrossRefGoogle Scholar
  17. 17.
    Anderson PM, Wilson MR (2004). J Chem Phys 121(17):8503–8510CrossRefGoogle Scholar
  18. 18.
    Srinivas G, Discher DE, Klein ML (2004). Nat Mater 3(9):638–644CrossRefGoogle Scholar
  19. 19.
    Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007). J Phys Chem B 111(27):7812–7824CrossRefGoogle Scholar
  20. 20.
    Ortiz V, Nielsen SO, Klein ML, Discher DE (2006). J Polym Sci B Polym Phys 44(14):1907–1918CrossRefGoogle Scholar
  21. 21.
    Reith D, Putz M, Muller-Plathe F (2003). J Comput Chem 24(13):1624–1636CrossRefGoogle Scholar
  22. 22.
    Noid WG, Chu JW, Ayton GS, Krishna V, Izvekov S, Voth GA, Das A, Andersen HC (2008). J Chem Phys 128(24)Google Scholar
  23. 23.
    Jusufi A, Hynninen AP, Panagiotopoulos AZ (2008). J Phys Chem B 112(44):13783–13792CrossRefGoogle Scholar
  24. 24.
    Jusufi A, Sanders S, Klein ML, Panagiotopoulos AZ (2011). J Phys Chem B 115(5):990–1001CrossRefGoogle Scholar
  25. 25.
    Dey S, Saha J (2017) Phys Rev E 95(2–1):023315Google Scholar
  26. 26.
    Wang SH, Larson RG (2015). Macromolecules 48(20):7709–7718CrossRefGoogle Scholar
  27. 27.
    Wu CF (2016). Macromolecular Theory and Simulations 25(4):336–347CrossRefGoogle Scholar
  28. 28.
    Chen C-W, Huang C-I (2015). Polymer 77:189–198CrossRefGoogle Scholar
  29. 29.
    Wang QF, Suraweera NS, Keffer DJ, Deng SX, Mays J (2012). Macromolecules 45(16):6669–6685CrossRefGoogle Scholar
  30. 30.
    Hess B, Kutzner C, van der Spoel D, Lindahl E (2008). J Chem Theory Comput 4(3):435–447CrossRefGoogle Scholar
  31. 31.
    McAliley JH, Bruce DA (2011). J Chem Theory Comput 7(11):3756–3767CrossRefGoogle Scholar
  32. 32.
    Anderson PM, Wilson MR (2005). Mol Phy 103(1):89–97CrossRefGoogle Scholar
  33. 33.
    Jorgensen WL, Maxwell DS, Tirado-Rives J (1996). J Am Chem Soc 118(45):11225–11236CrossRefGoogle Scholar
  34. 34.
    Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001). J Phys Chem B 105(28):6474–6487CrossRefGoogle Scholar
  35. 35.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983). J Chem Phys 79(2):926–935CrossRefGoogle Scholar
  36. 36.
    Hockney RW, Goel SP, Eastwood JW (1974). J Comput Phys 14(2):148–158CrossRefGoogle Scholar
  37. 37.
    Nose S (2002). Mol Phys 100(1):191–198CrossRefGoogle Scholar
  38. 38.
    Hoover WG (1985). Phys Rev A 31(3):1695–1697CrossRefGoogle Scholar
  39. 39.
    Parrinello M, Rahman A (1981). J Appl Phys 52(12):7182–7190CrossRefGoogle Scholar
  40. 40.
    Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995). J Chem Phys 103(19):8577–8593CrossRefGoogle Scholar
  41. 41.
    Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997). J Comput Chem 18(12):1463–1472CrossRefGoogle Scholar
  42. 42.
    Riley T, Stolnik S, Heald CR, Xiong CD, Garnett MC, Illum L, Davis SS, Purkiss SC, Barlow RJ, Gellert PR (2001). Langmuir 17(11):3168–3174CrossRefGoogle Scholar
  43. 43.
    Yang L, Qi X, Liu P, El Ghzaoui A, Li S (2010). Int J Pharm 394(1–2):43–49CrossRefGoogle Scholar
  44. 44.
    Humphrey W, Dalke A, Schulten K (1996). J Mol Graph 14(1):33–38CrossRefGoogle Scholar
  45. 45.
    Prasitnok K, Wilson MR (2013). Phys Chem Chem Phys 15(40):17093–17104CrossRefGoogle Scholar
  46. 46.
    Prasitnok K (2016). J Polym Res 23(7):1–9CrossRefGoogle Scholar
  47. 47.
    Rossi G, Fuchs PFJ, Barnoud J, Monticelli L (2012). J Phys Chem B 116(49):14353–14362CrossRefGoogle Scholar
  48. 48.
    Holder SJ, Sommerdijk NAJM (2011). Polym Chem 2(5):1018–1028CrossRefGoogle Scholar
  49. 49.
    Blanazs A, Armes SP, Ryan AJ (2009). Macromol Rapid Commun 30(4–5):267–277CrossRefGoogle Scholar
  50. 50.
    Srivastava S, Andreev M, Levi AE, Goldfeld DJ, Mao J, Heller WT, Prabhu VM, de Pablo JJ, Tirrell MV (2017). Nat Commun 8:14131CrossRefGoogle Scholar
  51. 51.
    Wu X, El Ghzaoui A, Li S (2012). J Colloid Interface Sci 374(1):127–134CrossRefGoogle Scholar
  52. 52.
    Fujiwara T, Kimura Y (2002). Macromol Biosci 2(1):11–23CrossRefGoogle Scholar
  53. 53.
    Amann M, Willner L, Stellbrink J, Radulescu A, Richter D (2015). Soft Matter 11(21):4208–4217CrossRefGoogle Scholar
  54. 54.
    Puaud F, Nicolai T, Nicol E, Benyahia L, Brotons G (2013) Phys Rev Lett 110 (2)Google Scholar
  55. 55.
    Puaud F, Nicolai T, Benyahia L, Nicol E (2013). J Phys Chem B 117(40):12312–12318CrossRefGoogle Scholar
  56. 56.
    Agrawal SK, Sanabria-DeLong N, Tew GN, Bhatia SR (2008). Macromolecules 41(5):1774–1784CrossRefGoogle Scholar
  57. 57.
    Greenall MJ, Buzza DMA, McLeish TCB (2009). J Chem Phys 131(3)Google Scholar
  58. 58.
    Zhulina EB, Borisov OV (2012). Macromolecules 45(11):4429–4440CrossRefGoogle Scholar
  59. 59.
    Liaw CY, Henderson KJ, Burghardt WR, Wang J, Shull KR (2015). Macromolecules 48(1):173–183CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceMahasarakham UniversityMaha SarakhamThailand

Personalised recommendations