Journal of Polymer Research

, 25:51 | Cite as

Synthesis and properties of novel soluble fluorinated aromatic polyamides containing 4-benzoyl-2,3,5,6-tetrafluorophenoxy pendant groups

  • Huali Tang
  • Bin Huang
  • Xiujun Xie
  • Tao Yan
  • Mingzhong Cai


A new diaroyl chloride monomer, 5-(4-benzoyl-2,3,5,6-tetrafluorophenoxy)isophthaloyl dichloride (BTFPIPC), was prepared in a three-step synthesis. Six novel aromatic polyamides containing 4-benzoyl-2,3,5,6-tetrafluorophenoxy pendant groups were synthesized by low temperature polycondensation of BTFPIPC with six aromatic diamines in N,N-dimethylacetamide (DMAc). All these new polymers are amorphous and readily soluble in various dipolar solvents such as DMAc, N-methyl-2-pyrrolidinone (NMP), N,N-dimethylformamide (DMF), and dimethyl sulfoxide (DMSO) at room temperature. These polymers showed glass transition temperatures between 212 and 243 °C and 5% weight loss temperatures ranging from 439 °C to 456 °C. These polyamides could be cast into transparent, flexible and strong films from DMAc solution with tensile strengths of 73.5–85.4 MPa, tensile moduli of 2.06–2.72 GPa, and elongations at break of 6.4–9.3%. These new polyamide films exhibited low dielectric constants of 3.26–3.57 (1 MHz), lower water uptakes in the range of 1.27–2.28%, and excellent transparency with an ultraviolet-visible absorption cut-off wavelength in the 326–373 nm range. Primary characterization of these new polyamides shows that they might serve as new candidates for processable high-performance polymeric materials.


Fluorinated polyamide Pendant 4-benzoyl-2,3,5,6-tetrafluorophenoxy group Solubility Dielectric property 



The authors thank the National Natural Science Foundation of China (Project 21664008) and the Natural Science Foundation of Jiangxi Province of China (Project 20132BAB203015) for financial support.


  1. 1.
    Oishi Y, Kakimoto M, Imai Y (1988). Macromolecules 21:547–550CrossRefGoogle Scholar
  2. 2.
    Yang HH (1989) Aromatic high-strength fibers. Wiley, New York, pp 66–289Google Scholar
  3. 3.
    Liou GS, Hsiao SH (2002). J Polym Sci Part A Polym Chem 40:2564–2574CrossRefGoogle Scholar
  4. 4.
    Wu SC, Shu CF (2003). J Polym Sci Part A Polym Chem 41:1160–1166CrossRefGoogle Scholar
  5. 5.
    Liaw DJ, Hsu PN, Chen WH, Lin SL (2002). Macromolecules 35:4669–4675CrossRefGoogle Scholar
  6. 6.
    Garcia JM, Garcia FC (2010) Serna F, de laPena JL. Prog Polym Sci 35:623–686CrossRefGoogle Scholar
  7. 7.
    Marchildon K (2011). Macromol React Eng 5:22–54CrossRefGoogle Scholar
  8. 8.
    Hsiao SH, Huang PC (1997). Macromol Chem Phys 198:4001–4009CrossRefGoogle Scholar
  9. 9.
    Yang CP, Lin JH (1994). J Polym Sci Part A Polym Chem 32:423–433CrossRefGoogle Scholar
  10. 10.
    Ghaemy M, Barghamadi M (2008). J Appl Polym Sci 110:1730–1738CrossRefGoogle Scholar
  11. 11.
    Chen J-C, Rajendran K, Huang S-W, Chang H-W (2011). J Polym Res 18:1693–1703CrossRefGoogle Scholar
  12. 12.
    Zeng K, Hong HB, Zhou SH, Wu DM, Miao PK, Huang ZF, Yang G (2009). Polymer 50:5002–5006CrossRefGoogle Scholar
  13. 13.
    Yen HJ, Liou GS (2008). J Polym Sci Part A Polym Chem 46:7354–7368CrossRefGoogle Scholar
  14. 14.
    Behniafar H, Khosravi-borna S (2009). Polym Int 58:1299–1307CrossRefGoogle Scholar
  15. 15.
    Espeso JF, Lozano AE, de la Campa JG, Gaecia-Yoldi I, de Abajo J (2010). J Polym Sci Part A Polym Chem 48:1743–1751CrossRefGoogle Scholar
  16. 16.
    Hsiao S-H, Wang H-M, Chou J-S, Guo W, Tsai T-H (2012). J Polym Res 19:9902CrossRefGoogle Scholar
  17. 17.
    Dinari M, Haghighi A (2017). J Polym Res 24:29CrossRefGoogle Scholar
  18. 18.
    Hsiao SH, Yang CP, Lin WL (1999). Macromol Chem Phys 200:1428–1433CrossRefGoogle Scholar
  19. 19.
    Maji S, Sen SK, Dasgupta B, Chatterjee S, Banerjee S (2009). Polym Adv Technol 20:384–392CrossRefGoogle Scholar
  20. 20.
    Sheng SR, Ma CX, Jiang JW, Huang ZZ, Song CS (2010). J Appl Polym Sci 116:1650–1659Google Scholar
  21. 21.
    Hsiao SH, Lin KH (2004). Polymer 45:7877–7885CrossRefGoogle Scholar
  22. 22.
    Pal SS, Patil PS, Salunkhe MM, Maldar NN, Wadgaonkar PP (2009). Eur Polym J 45:953–959CrossRefGoogle Scholar
  23. 23.
    Damaceanu MD, Rusu RD, Nicolescu A, Bruma M, Rusanov AL (2011). Polym Int 60:1248–1258CrossRefGoogle Scholar
  24. 24.
    Agata Y, Kobayashi M, Kimura H, Takeishi M (2005). Polym Int 54:260–266CrossRefGoogle Scholar
  25. 25.
    Liang QZ, Liu PT, Liu C, Jian XG, Hong DY, Li Y (2005). Polymer 46:6258–6265CrossRefGoogle Scholar
  26. 26.
    Liaw DJ, Chang FC, Leung MK, Chou MY, Muellen K (2005). Macromolecules 38:4024–4029CrossRefGoogle Scholar
  27. 27.
    Liaw DJ, Huang CC, Chen WH (2006). Polymer 47:2337–2348CrossRefGoogle Scholar
  28. 28.
    Hsiao S-H, Wang H-M, Chang P-C, Kung Y-R (2013). Lee T-M 20:154Google Scholar
  29. 29.
    Maier G (2001). Prog Polym Sci 26:3–65CrossRefGoogle Scholar
  30. 30.
    Dhara MG, Banerjee S (2010). Prog Polym Sci 35:1022–1077CrossRefGoogle Scholar
  31. 31.
    Hsiao SH, Yang CP, Tsai CY, Liou GS (2004). Eur Polym J 40:1081–1094CrossRefGoogle Scholar
  32. 32.
    Ge ZY, Yang SY, Tao ZQ, Liu JG, Fan L (2004). Polymer 45:3627–3635CrossRefGoogle Scholar
  33. 33.
    Liaw DJ, Chen WH, Hu CK, Lee KR, Lai JY (2007). Polymer 48:6571–6580CrossRefGoogle Scholar
  34. 34.
    Sheng SR, Pei XL, Liu XL, Song CS (2009). Eur Polym J 45:230–236CrossRefGoogle Scholar
  35. 35.
    Behniafar H, Sedaghatdoost M (2011). J Fluor Chem 132:276–284CrossRefGoogle Scholar
  36. 36.
    Liu XL, Wu D, Sun R, Yu LM, Jiang JW, Sheng SR (2013). J Fluor Chem 154:16–32CrossRefGoogle Scholar
  37. 37.
    Cai M, Zhu M, Wang P, Song C (2010). Polymer 51:1293–1300CrossRefGoogle Scholar
  38. 38.
    Cai M, Chen M, Yu Y, Song C (2013). Polym Adv Technol 24:466–472CrossRefGoogle Scholar
  39. 39.
    Zhu X, Yan T, Xu Q, Cai M (2016). J Polym Res 23:24CrossRefGoogle Scholar
  40. 40.
    Zou F, Wen H, Yan T, Cai M (2016). J Polym Res 23:225CrossRefGoogle Scholar
  41. 41.
    Houghan G, Tesoro G, Viehbeck A (1996). Macromolecules 29:3453–3456CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryJiangxi Normal UniversityNanchangPeople’s Republic of China

Personalised recommendations