Advertisement

Self-assembly between photoresponsive azobenzene-based dications and thermally sensitive PNIPAM-b-PAA block copolymers in aqueous solution

  • Chang Peng
  • Wenkui Zhao
  • Anjun Wu
  • Nan Zhou
  • Shu Chen
ORIGINAL PAPER
  • 251 Downloads

Abstract

The effect of the photoresponsive azobenzene-based dications (AzoC10N2O22+) on the association in thermally sensitive poly(N-isopropylacrylamide)-b-poly(acrylic acid) (PNIPAM-b-PAA) solutions is studied for the first time. The self-assembly of this complexes was measured by dynamic light scattering (DLS), scanning electron microscopy (SEM) and ultraviolet-visible (UV-Vis) spectrum. Results show that the micellar size of this colloidal complexes can be changed by the molar weight of AzoC10N2O22+ and reversibly controlled by ultraviolet (UV) light (365 nm) and blue light (455 nm) irradiation. It is the first to use azobenzene-based dications to control the self-assembly of PNIPAM-b-PAA by light irradiation, which enables the selection of appropriate conditions for the micellar properties by light.

Keywords

Azobenzene Block copolymers Self-assembly Photoresponse 

Notes

Acknowledgements

We gratefully thank the National Science Foundation of China (J1210040) for the support of this research.

Supplementary material

10965_2018_1445_MOESM1_ESM.docx (478 kb)
ESM 1 (DOCX 478 kb)

References

  1. 1.
    Cao Z, Yu Q, Xue H, Cheng G, Jiang S (2010) Nanoparticles for drug delivery prepared from amphiphilic PLGA Zwitterionic block copolymers with sharp contrast in polarity between two blocks. Angew Chem 122:3859–3864CrossRefGoogle Scholar
  2. 2.
    AR B, Huesmann D, Kelsch A, Weilbächer M, Xie J, Bros M et al (2014) Polypeptoid-block-polypeptide copolymers: synthesis, characterization, and application of amphiphilic block copolypept(o)ides in drug formulations and miniemulsion techniques. Biomacromolecules 15:548–557CrossRefGoogle Scholar
  3. 3.
    Guo J, Hong H, Chen G, Shi S, Nayak TR, Theuer CP et al (2014) Theranostic unimolecular micelles based on brush-shaped amphiphilic block copolymers for tumor-targeted drug delivery and positron emission tomography imaging. ACS Appl Mater Interfaces 6:21769–21779CrossRefGoogle Scholar
  4. 4.
    Wandera D, Himstedt HH, Marroquin M, Wickramasinghe SR, Husson SM (2012) Modification of ultrafiltration membranes with block copolymer nanolayers for produced water treatment: the roles of polymer chain density and polymerization time on performance. J Membr Sci 403–404:250–260CrossRefGoogle Scholar
  5. 5.
    Kita-Tokarczyk K, Junginger M, Belegrinou S, Taubert A (2011) Amphiphilic polymers at interfaces. Adv Polym Sci 242:151–201CrossRefGoogle Scholar
  6. 6.
    Samanta S, Layek RK, Nandi AK (2011) Active immobilized palladium catalyst based on multiporous amphiphilic graft copolymer. React Funct Polym 71:1045–1054CrossRefGoogle Scholar
  7. 7.
    Klingelhöfer S, Heitz W, Greiner A, Oestreich S, Förster S, Antonietti M (1997) Preparation of palladium colloids in block copolymer micelles and their use for the catalysis of the heck reaction. J Am Chem Soc 119:10116–10120CrossRefGoogle Scholar
  8. 8.
    Schilli CM, Zhang M, Rizzardo E, Thang SH, Chong YK, Edwards K et al (2004) A new double-responsive block copolymer synthesized via RAFT polymerization: Poly(N-isopropylacrylamide)-block-poly(acrylic acid). Macromolecules 37:7861–7866CrossRefGoogle Scholar
  9. 9.
    Li G, Song S, Guo L, Ma S (2008) Self-assembly of thermo- and pH-responsive poly(acrylic acid)-b-poly(N-isopropylacrylamide) micelles for drug delivery. J Polym Sci A Polym Chem 46:5028–5035CrossRefGoogle Scholar
  10. 10.
    Annaka M, Morishita K, Okabe S (2007) Electrostatic self-assembly of neutral and polyelectrolyte block copolymers and oppositely charged surfactant. J Phys Chem B 111:11700–11707CrossRefGoogle Scholar
  11. 11.
    Liu X, Luo S, Ye J, Wu C (2012) Effect of Ca2+ ion and temperature on association of thermally sensitive PAA-b-PNIPAM diblock chains in aqueous solutions. Macromolecules 45:4830–4838CrossRefGoogle Scholar
  12. 12.
    Wang Y, Han P, Xu H, Wang Z, Zhang X, Kabanov AV (2010) Photo-controlled self-assembly and disassembly of block ionomer complex vesicles: a facile approach towards supramolecular polymer nanocontainers. Langmuir 26:709–715CrossRefGoogle Scholar
  13. 13.
    Satoh T, Sumaru K, Takagi T, Kanamori T (2011) Fast-reversible light-driven hydrogels consisting of spirobenzopyran-functionalized poly(N-isopropylamide). Soft Matter 7:8030–8034CrossRefGoogle Scholar
  14. 14.
    Abdallah D, Cully MJ, Li Y, Shipp DA (2008) Stoichiometric complexes of polyelectrolyte and azo-functionalized surfactant. Colloid Polym Sci 286:739–745CrossRefGoogle Scholar
  15. 15.
    Choi BY, Kahng SJ, Kim S, Kim H, Kim HW, Song YJ et al (2006) Conformational molecular switch of the Azo molecule: a scanning tunneling microscopy study. Phys Rev Lett 96:156106CrossRefGoogle Scholar
  16. 16.
    Loudwig S, Bayley HJ (2006) Photoisomerization of an individual Azo molecule in water: an on-off switch triggered by light at a fixed wavelength. J Am Chem Soc 128:12404–12405CrossRefGoogle Scholar
  17. 17.
    Zhang C, Du MH, Cheng HP, Zhang XG, Roitberg AE, Krause JL (2004) Coherent electron transport through an Azo molecule: A light-driven molecular switch. Phys Rev Lett 92:15830Google Scholar
  18. 18.
    Kumar AS, Ye T, Takami T, Yu BC, Flatt AK, Tour JM, Weiss PS (2008) Reversible photo-switching of single molecules in controlled nanoscale environments. Nano Lett 8:1644–1648CrossRefGoogle Scholar
  19. 19.
    Song B, Zhao J, Wang B, Jiang R (2009) Synthesis and self-assembly of new light-sensitive gemini surfactants containing an azobenzene group. Colloids Surf A Physicochem Eng Asp 352:24–30CrossRefGoogle Scholar
  20. 20.
    Faure D, Gravier J, Labrot T, Desbat B, Oda R, Bassani DM (2005) Photoinduced morphism of gemini surfactant aggregates. Chem Commun 9:1167–1169CrossRefGoogle Scholar
  21. 21.
    Zinchenko AA, Tanahashi M, Murata S (2012) Photochemical modulation of DNA conformation by organic dications. Chem Bio Chem 13:105–111CrossRefGoogle Scholar
  22. 22.
    Yang Y, Zhang B, Wang Y, Yue L, Li W, Wu L (2013) A photo-driven polyoxometalate complex shuttle and its homogeneous catalysis and heterogeneous separation. J Am Chem Soc 135:14500–14503CrossRefGoogle Scholar
  23. 23.
    Yang Y, Yue L, Zhang B, Li H, Maher E, Li Y et al (2012) Photo-responsive self-assembly of an Azo-ended surfactant-encapsulated polyoxometalate complex for modulating catalytic reactions. Small 8:3105–3110CrossRefGoogle Scholar
  24. 24.
    Cicciarelli BA, Hatton TA, Smith KA (2007) Temperature dependence of aggregation and dynamic surface tension in a photoresponsive surfactant system. Langmuir 23:4753–4764CrossRefGoogle Scholar
  25. 25.
    Shang TG, Smith KA, Hatton TA (2003) Photoresponsive surfactants exhibiting unusually large, reversible surface tension changes under varying illumination conditions. Langmuir 19:10764–10773CrossRefGoogle Scholar
  26. 26.
    Kang HC, Lee BM, Yoon J, Yoon M (2000) Synthesis and surface-active properties of new photosensitive surfactants containing the Azo group. J Colloid Interface Sci 231:255–264CrossRefGoogle Scholar
  27. 27.
    Chevallier E, Monteux C, Lequeux F, Tribet C (2012) Photofoams: remote control of foam destabilization by exposure to light using an Azo surfactant. Langmuir 28:2308–2312CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ScienceHunan Agricultural UniversityChangshaPeople’s Republic of China
  2. 2.School of Chemistry and Chemical EngineeringHunan UniversityChangshaPeople’s Republic of China

Personalised recommendations