Skip to main content
Log in

Aging induced ductile-brittle-ductile transition in bisphenol A polycarbonate

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The degradation of biphenol A polycarbonate under the combined action of the photo- and thermal-irradiation in the presence of humidity and oxygen was studied by tensile testing and physicochemical characterizations. A ductile-brittle-ductile transition dissimilar to previously reported aging-induced-embrittlement (ductile-brittle transition) has been revealed in the present article. Further increasing aging time (longer than 650 h) after ductile-brittle transition leads to the rejuvenation in ductile rather than continuous deterioration. Occurring with the second brittle-ductile transition, a competition between oxidation-induced chain scission and crosslinking has also been recorded by FTIR and DSC. Meanwhile, SEM results exclude the possibility that the rejuvenation in ductile is from the change in surface morphology upon aging. Thus, the aging-induced ductile-brittle-ductile transition could result from, at least partly, the competition between oxidation-induced chain-scission and chain crosslinking.

Aging induced ductile-brittle-ductile transition in bisphenol A polycarbonate

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cai ZZ, Yu HY, Zhang YC, Li M, Niu XY, Shi ZS, Cui ZC, Chen CM, Zhang DM (2015) Synthesis and characterization of novel fluorinated polycarbonate negative-type photoresist for optical waveguide. Polymer 61:140–146

    Article  CAS  Google Scholar 

  2. Legrand DG, Bendler JT (eds) (1999) Handbook of polycarbonate science and technology. CRC press, New York, pp 107–130

    Google Scholar 

  3. Olagoke O (ed) (1997) Handbook of thermalplastics. Marcel Dekker, New York, pp 609–640

    Google Scholar 

  4. Senden DJA, van Dommelen JAW, Govaert LE (2012) Physical aging and deformation kinetics of polycarbonate. J Polym Sci B Polym Phys 50:1589–1596

    Article  CAS  Google Scholar 

  5. Pickett JE, Coyle DJ (2013) Hydrolysis kinetics of condensation polymers under humidity aging conditions. Polym Degrad Stab 98:1311–1320

    Article  CAS  Google Scholar 

  6. Soloukhin VA, Brokken-Zijp JCM, van Asselen OLJ, de With G (2003) Physical aging of polycarbonate: elastic modulus, hardness, creep, endothermic peak, molecular weight distribution, and infrared data. Macromolecules 36:7585–7597

    Article  CAS  Google Scholar 

  7. Jang BN, Wilkie CA (2004) A TGA/FTIR and mass spectral study on the thermal degradation of bisphenol A polycarbonate. Polym Degrad Stab 86:419–430

    Article  CAS  Google Scholar 

  8. Diepens M, Gijsman P (2011) Outdoor and accelerated weathering studies of bisphenol A polycarbonate. Polym Degrad Stab 96:649–652

    Article  CAS  Google Scholar 

  9. Factor A, Ligon WV, May RJ (1987) The role of oxygen in the photoaging of bisphenol A polycarbonate. 2. GC/GC/high-resolution MS analysis of Florida-weathered polycarbonate. Macromolecules 20:2461–2468

    Article  CAS  Google Scholar 

  10. Collin S, Bussiere PO, Therias S, Lambert JM, Perdereau J, Gardette JL (2012) Physicochemical and mechanical impacts of photo-ageing on bisphenol A polycarbonate. Polym Degrad Stab 97:2284–2293

    Article  CAS  Google Scholar 

  11. Rivaton A (1995) Recent advances in bisphenol-A polycarbonate photodegradation. Polym Degrad Stab 49:163–179

    Article  CAS  Google Scholar 

  12. Jiang CK, Jiang H, Zhu ZM, Zhang JW, Guo SY, Xiong Y (2015) Application of time-temperature-stress superposition principle on the accelerated physical aging test of polycarbonate. Polym Eng Sci 55(10):2215–2221

  13. Ram A, Zilber O, Kenig S (1985) Life expectation of polycarbonate. Polym Eng Sci 25(9):535–540

    Article  CAS  Google Scholar 

  14. Liu H, Zhou MY, Zhou YL, Wang S, Li GX, Jiang L, Dan Y (2014) Aging life prediction system of polymer outdoors constructed by ANN. 1. Lifetime prediction for polycarbonate. Polym Degrad Stab 105:218–236

    Article  CAS  Google Scholar 

  15. Hutchinson JM, Smith S, Horne B, Gourlay GM (1999) Physical aging of polycarbonate: enthalpy relaxation, creep response, and yielding behavior. Macromolecules 32:5046–5061

    Article  CAS  Google Scholar 

  16. Senden DJA, Engels TAP, Sontjens SHM, Govaert LE (2012) The effect of physical aging on the embrittlement of steam-sterilized polycarbonate. J Mater Sci 47:6043–6046

    Article  CAS  Google Scholar 

  17. Sherman ES, Ram A, Kenig S (1982) Tensile failure of weathered polycarbonate. Polym Eng Sci 22(8):457–465

    Article  CAS  Google Scholar 

  18. Pan YH, Yang MJ, Han SM, Gao WB, Dan Y (2012) Study on the changing regularity of structure and properties of PC aged outdoor in western areas of China. J Appl Polym Sci 125:2128–2136

    Article  CAS  Google Scholar 

  19. Ho CH, Vu-Khanh T (2004) Physical aging and time-temperature behavior concerning fracture performance of polycarbonate. Theor Appl Fract Mech 41:103–114

    Article  CAS  Google Scholar 

  20. Diepens M, Gijsman P (2007) Photodegradation of bisphenol A polycarbonate. Polym Degrad Stab 92:397–406

    Article  CAS  Google Scholar 

  21. Rivaton A, Mailhot B, Soulestin J, Varghese H, Gardette JL (2002) Influence of the chemical structure of polycarbonates on the contribution of crosslinking and chain scissions to the photothermal ageing. Eur Polym J 38:1349–1363

    Article  CAS  Google Scholar 

  22. Tjandraatmadja GF, Burn LS, Jollands MC (2002) Evaluation of commercial polycarbonate optical properties after QUV-A radiation – the role of humidity in photodegradation. Polym Degrad Stab 78:435–448

    Article  CAS  Google Scholar 

  23. Paredes E, Frias P (1982) SEM observations of crazing and fracture in polycarbonate. J Mater Sci Lett 1:394–396

    Article  CAS  Google Scholar 

  24. Suarez JCM, Coutinho FMB, Sydenstricker TH (2003) SEM studies of tensile fracture surfaces of polypropylene-sawdust composites. Polym Test 22:819–824

    Article  Google Scholar 

  25. Claude B, Gonon L, Duchet J, Verney V, Gardette JL (2004) Surface cross-linking of polycarbonate under irradiation at long wavelengths. Polym Degrad Stab 83:237–240

    Article  CAS  Google Scholar 

  26. Nagai N, Okumura H, Imai T (2003) Nishiyama, depth profile analysis of the photochemical degradation of polycarbonate by infrared spectroscopy. Polym Degrad Stab 81:491–496

    Article  CAS  Google Scholar 

  27. Gerlock JL, Smith CA, Cooper VA, Dusbiber TG, Weber WH (1998) On the use of Fourier transform infrared spectroscopy and ultraviolet spectroscopy to assess the weathering performance isolated clearcoats from different chemical families. Polym Degrad Stab 62:225

    Article  CAS  Google Scholar 

  28. Lemaire J, Gardette JL, Rivaton A, Roger A (1986) Dual photochemistries in aliphatic polyamides, bisphenol A polycarbonate and aromatic polyurethanes – a short review. Polym Degrad Stab 15:1–13

    Article  CAS  Google Scholar 

  29. Factor A, Chu ML (1980) The role of oxygen in the photo-ageing of bisphenol-A polycarbonate. Polym Degrad Stab 2:203–223

    Article  CAS  Google Scholar 

  30. Adams MR, Garton A (1993) Surface modification of bisphenol-A-polycarbonate by far-UV radiation. Part I: In vacuum. Polym Degrad Stab 41:265

    Article  CAS  Google Scholar 

  31. Adams MR, Garton A (1993) Surface modification of bisphenol-A-polycarbonate by far-UV radiation. Part II: In air. Polym Degrad Stab 42:145

    Article  CAS  Google Scholar 

  32. Clark DT, Munro HS (1984) Surface and bulk aspects of the natural and artificial photo-ageing of bisphenol A polycarbonate as revealed by ESCA and difference UV spectroscopy. Polym Degrad Stab 8(4):195

    Article  CAS  Google Scholar 

  33. Webb JD, Czanderna AW (1986) End-group effects on the wavelength dependence of laser-induced photodegradation in bisphenol-A polycarbonate. Macromolecules 19:2810

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (No. 51403140 and No. 51133005) for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Jiang or Yi Dan.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Zhou, M., Ding, Y. et al. Aging induced ductile-brittle-ductile transition in bisphenol A polycarbonate. J Polym Res 25, 39 (2018). https://doi.org/10.1007/s10965-018-1443-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1443-4

Keywords

Navigation