Journal of Polymer Research

, 25:42 | Cite as

Use of functionalized boehmite nanoparticles to improve the hardness and tribological properties of polyurethane films

  • Gülden Eroğlu
  • Güngör Gündüz
  • Üner Çolak
  • Bora Mavis


Plate-like boehmite nanoparticles (BH) produced from aluminum hydroxide by hydrothermal process were functionalized in one step with two different diisocyanates. The amount of free isocyanates that were available for polymerization reaction was determined to be higher in functionalization with the aromatic diisocyanate (diphenylmethane-4,4′-di-isocyanate – MDI). In composite film production MDI functionalized BH (MDI-BH) was used. Polyurethane based nanocomposite films were produced through polymerization of non-functionalized and MDI-BH with two different polyester-polyols that were synthesized by the esterification of 1,4 butanediol with either adipic acid or phthalic anhydride. It was impossible to form films suitable for hardness and tribological tests with non-functionalized BH. Up to 1 wt% MDI-BH additions were effective in increasing the hardness and scratch resistance of films. The increases in abrasion resistance were more significant and followed the increasing trend for MDI-BH additions even up to 5 wt%. The highest increase, which was 400% with respect to the unmodified resin was observed with adipic acid based polyols and this result was obtained at MDI-BH content of 3 wt%.


Diisocyanate Functionalization Boehmite Nanoparticle Polyurethane Nanocomposite Film Tribological properties 



Financial supports of TÜBİTAK (Project No 108M204), Hacettepe Bilimsel Araştırmalar Birimi (Project No 09A602003), and ODTÜ BAP Koordinatörlüğü (Project No BAP-03-04-2009-01) are acknowledged.


  1. 1.
    Wang Y, Lim S, Luo JL, Xu ZH (2006) Tribological and corrosion behaviors of Al2O3/polymer nanocomposite coatings. Wear 260(9–10):976–983CrossRefGoogle Scholar
  2. 2.
    Friedrich K, Fakirov S, Zhang Z (2005) polymer composites from nano-to macro-scale. Application of non-layered nanoparticles in polymer modification1st edn. Springer Science, New YorkGoogle Scholar
  3. 3.
    de la Isla A, Brostow W, Bujard B, Estevez M, Rodriguez JR, Vargas S, Castaño VM (2003) Nanohybrid scratch resistant coatings for teeth and bone viscoelasticity manifested in tribology. Mater Res Innov 7(2):110–114CrossRefGoogle Scholar
  4. 4.
    Brostow W, Lobland H, Hnatchuk N, Perez J (2017) Improvement of scratch and wear resistance of polymers by fillers including nanofillers. Nano 7(3):66Google Scholar
  5. 5.
    Brostow W, Broza G, Datashvili T, Hagg Lobland HE, Kopyniecka A (2012) Poly(butyl terephthalate)/oxytetramethylene + oxidized carbon nanotubes hybrids: mechanical and tribological behavior. J Mater Res 27(14):1815–1823CrossRefGoogle Scholar
  6. 6.
    Sugimoto H, Daimatsu K, Nakanishi E, Ogasawara Y, Yasumura T, Inomata K (2006) Preparation and properties of poly(methylmethacrylate)-silica hybrid materials incorporating reactive silica nanoparticles. Polymer 47(11):3754–3759CrossRefGoogle Scholar
  7. 7.
    Mammeri F, Bourhis EL, Rozes L, Sanchez C (2005) Mechanical properties of hybrid organic-inorganic materials. J Mater Chem 15(35–36):3787–3811CrossRefGoogle Scholar
  8. 8.
    Gläsel HJ, Hartmann E, Wennrich L, Höche T, Buchmeiser MR (2007) Novel nanosized aluminium carboxylates: synthesis, characterization and use as nanofillers for protective polymeric coatings. Macromol Mater Eng 292(1):70–77CrossRefGoogle Scholar
  9. 9.
    Li H, Yan Y, Liu B, Chen W, Chen S (2007) Studies of surface functional modification of nanosized α-alumina. Powder Technol 178(3):203–207CrossRefGoogle Scholar
  10. 10.
    Brostow W, Datashvili T, Huang B, Too J (2009) Tensile properties of LDPE + Boehmite composites. Polym Compos 30(6):760–767CrossRefGoogle Scholar
  11. 11.
    Chen S, Sui J, Chen L (2004) Positional assembly of hybrid polyurethane nanocomposites via incorporation of inorganic building blocks into organic polymer. Colloid Polym Sci 283(1):66–73CrossRefGoogle Scholar
  12. 12.
    Brostow W, Datashvili T (2008) Chemical modification and characterization of boehmite particles. Chem Chem Technol 2(1):27–32Google Scholar
  13. 13.
    Liu Y-L, Hsu C-Y, Wang M-L, Chen H-S (2003) A novel approach of chemical functionalization on nano-scaled silica particles. Nanotechnology 14:813–819CrossRefGoogle Scholar
  14. 14.
    Türünç O, Kayaman-Apohan N, Kahraman M, Menceloğlu Y, Güngör A (2008) Nonisocyanate based polyurethane/silica nanocomposites and their coating performance. J Sol-Gel Sci Technol 47(3):290–299CrossRefGoogle Scholar
  15. 15.
    Gatos KG, Martínez Alcázar JG, Psarras GC, Thomann R, Karger-Kocsis J (2007) Polyurethane latex/water dispersible boehmite alumina nanocomposites: thermal, mechanical and dielectrical properties. Compos Sci Technol 67(2):157–167CrossRefGoogle Scholar
  16. 16.
    Guo Z, Kim TY, Lei K, Pereira T, Sugar JG, Hahn HT (2008) Strengthening and thermal stabilization of polyurethane nanocomposites with silicon carbide nanoparticles by a surface-initiated-polymerization approach. Compos Sci Technol 68(1):164–170CrossRefGoogle Scholar
  17. 17.
    Horch RA, Shahid N, Mistry AS, Timmer MD, Mikos AG, Barron AR (2004) Nanoreinforcement of poly(propylene fumarate)-based networks with surface modified alumoxane nanoparticles for bone tissue engineering. Biomacromolecules 5(5):1990–1998CrossRefGoogle Scholar
  18. 18.
    Mathieu Y, Lebeau B, Valtchev V (2007) Control of the morphology and particle size of boehmite nanoparticles synthesized under hydrothermal conditions. Langmuir 23(18):9435–9442CrossRefGoogle Scholar
  19. 19.
    Chattopadhyay DK, Muehlberg AJ, Webster DC (2008) Organic-inorganic hybrid coatings prepared from glycidyl carbamate resins and amino-functional silanes. Prog Org Coat 63(4):405–415CrossRefGoogle Scholar
  20. 20.
    Alphonse P, Courty M (2005) Structure and thermal behavior of nanocrystalline boehmite. Thermochim Acta 425(1–2):75–89CrossRefGoogle Scholar
  21. 21.
    Chen JH, Rong MZ, Ruan WH, Zhang MQ (2009) Interfacial enhancement of nano-SiO2/polypropylene composites. Compos Sci Technol 69:252–259CrossRefGoogle Scholar
  22. 22.
    Zhang J, Yu J, Guo ZX (2006) Modification of nano-alumina surface by michael addition reaction. Chin Chem Lett 17(2):251–252Google Scholar
  23. 23.
    Akram D, Ahmad S, Sharmin E (2010) Silica reinforced organic–inorganic hybrid polyurethane nanocomposites from sustainable resource. Macromol Chem Phys 211(4):412–419CrossRefGoogle Scholar
  24. 24.
    Adhikari R, Khanal S, Shakya A, Michler GH, Youssef B, Saiter JM (2012) Functionalised SIS triblock copolymer elastomer and its nanocomposites: synthesis and characterisation. Mater Res Innov 16(5):356–361CrossRefGoogle Scholar
  25. 25.
    Katayama J, Ohki Y, Fuse N, Kozako M, Tanaka T (2013) Effects of nanofiller materials on the dielectric properties of epoxy nanocomposites. IEEE Trans Dielectr Electr Insul 20(1):157–165CrossRefGoogle Scholar
  26. 26.
    Pedrazzoli D, Khumalo VM, Karger-Kocsis J, Pegoretti A (2014) Thermal, viscoelastic and mechanical behavior of polypropylene with synthetic boehmite alumina nanoparticles. Polym Test 35:92–100CrossRefGoogle Scholar
  27. 27.
    Rajabi L, Marzban M, Derakhshan AA (2014) Epoxy/alumoxane and epoxy/boehmite nanocomposites: cure behavior, thermal stability, hardness and fracture surface morphology. Iran Polym J 23(3):203–215CrossRefGoogle Scholar
  28. 28.
    Siengchin S (2013) Dynamic mechanic and creep behaviors of polyoxymethylene/boehmite alumina nanocomposites produced by water-mediated compounding: effect of particle size. J Thermoplast Compos Mater 26(7):863–877CrossRefGoogle Scholar
  29. 29.
    Tang Z, Zhang C, Zhu L, Guo B (2016) Low permeability styrene butadiene rubber/boehmite nanocomposites modified with tannic acid. Mater Des 103:25–31CrossRefGoogle Scholar
  30. 30.
    Chantarachindawong R, Osotchan T, Chindaudom P, Srikhirin T (2016) Hard coatings for CR-39 based on Al2O3–ZrO2 3-glycidoxypropyltrimethoxysilane (GPTMS) and tetraethoxysilane (TEOS) nanocomposites. J Sol-Gel Sci Technol 79(1):190–200CrossRefGoogle Scholar
  31. 31.
    Corcione CE, Cataldi A, Frigione M (2013) Measurements of size distribution nanoparticles in ultraviolet-curable methacrylate-based boehmite nanocomposites. J Appl Polym Sci 128(6):4102–4109CrossRefGoogle Scholar
  32. 32.
    Corcione CE, Frigione M (2012) UV-cured polymer-boehmite nanocomposite as protective coating for wood elements. Prog Org Coat 74(4):781–787CrossRefGoogle Scholar
  33. 33.
    Corcione CE, Manno R, Frigione M (2016) Sunlight-curable boehmite/siloxane-modified methacrylic based nanocomposites as insulating coatings for stone substrates. Prog Org Coat 95:107–119CrossRefGoogle Scholar
  34. 34.
    Malucelli G, Alongi J, Gioffredi E, Lazzari M (2013) Thermal, rheological, and barrier properties of waterborne acrylic nanocomposite coatings based on boehmite or organo-modified montmorillonite. J Therm Anal Calorim 111(2):1303–1310CrossRefGoogle Scholar
  35. 35.
    Smitha VS, Francois P, Saraswathy Hareesh UN, Warrier KG (2013) Effect of precursor particle size distribution on the morphology and low wetting behavior of photocatalytic nanocoatings on glass surfaces. J Mater Chem A 1(39):12178–12187CrossRefGoogle Scholar
  36. 36.
    Gündüz G (2015) Chemistry, materials, and properties of surface coatings. DEStech Pub, PennsylvaniaGoogle Scholar
  37. 37.
    Liu Y, Li X, Xu Z, Hu Z (2010) Preparation of flower-like and rod-like boehmite via a hydrothermal route in a buffer solution. J Phys Chem Solids 71(3):206–209CrossRefGoogle Scholar
  38. 38.
    Zanganeh S, Kajbafvala A, Zanganeh N, Mohajerani M, Lak A, Bayati M, Zargar H, Sadrnezhaad S (2010) Self-assembly of boehmite nanopetals to form 3D high surface area nanoarchitectures. Appl Phys A Mater Sci Process 99(1):317–321CrossRefGoogle Scholar
  39. 39.
    Guo Z, Pereira T, Choi O, Wang Y, Hahn HT (2006) Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties. J Mater Chem 16(27):2800–2808CrossRefGoogle Scholar
  40. 40.
    Hozumi A, Kim B, McCarthy TJ (2009) Hydrophobicity of perfluoroalkyl isocyanate monolayers on oxidized aluminum surfaces. Langmuir 25(12):6834–6840CrossRefGoogle Scholar
  41. 41.
    Shahid N, Villate RG, Barron AR (2005) Chemically functionalized alumina nanoparticle effect on carbon fiber/epoxy composites. Compos Sci Technol 65(14):2250–2258CrossRefGoogle Scholar
  42. 42.
    Brostow W, Deborde J-L, Jaklewicz M, Olszynski P (2003) Tribology with emphasis on polymers: friction, scratch resistance and wear. J Mater Educ 24(4–6):119–132Google Scholar
  43. 43.
    Brostow W, Hagg Lobland HE, Narkis M (2011) The concept of materials brittleness and its applications. Polym Bull 67(8):1697CrossRefGoogle Scholar
  44. 44.
    Wojdyr M (2010) Fityk: a general-purpose peak fitting program. J Appl Crystallogr 43(5 Part 1):1126–1128CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Polymer Science and Technology ProgramOrta Doğu Teknik ÜniversitesiAnkaraTurkey
  2. 2.Kimya Mühendisliği BölümüOrta Doğu Teknik ÜniversitesiAnkaraTurkey
  3. 3.Enerji Enstitüsüİstanbul Teknik ÜniversitesiİstanbulTurkey
  4. 4.Makina Mühendisliği BölümüHacettepe ÜniversitesiAnkaraTurkey

Personalised recommendations