Journal of Polymer Research

, 25:45 | Cite as

Self-assembly nucleic acid-based biopolymers: learn from the nature

  • Pitchaya Pakornpadungsit
  • Wirasak Smitthipong
  • Arkadiusz Chworos
ORIGINAL PAPER
  • 92 Downloads
Part of the following topical collections:
  1. Topical Collection on Bio-Based Polymers

Abstract

This review highlights the recent developments in nucleic acid-based based materials for biomedical applications and functional devices. DNA and RNA are anionic macromolecules composing sugar-phosphate backbone, which usually structure as rod-like double helix with base pair stacking. Electrostatic interactions are the main components in the complex formed between anionic nucleic acid and cationic molecule. These nucleic acid-based biopolymers have significant potential as functional materials for drug delivery, biosensors, and a scaffold for many biodegradable materials.

Keywords

DNA RNA Self-assembly Electrostatic interaction Supramolecular material Functional material 

Notes

Acknowledgements

This work is supported by Kasetsart University Research and Development Institute (KURDI), Kasetsart University, Thailand. The authors would like to gratefully acknowledge Professor Matthew Tirrell from University of Chicago for all the supports.

References

  1. 1.
    Zhou Z, Yan X, Cook TR, Saha ML, Stang PJ (2016). J Am Chem Soc 138(3):806CrossRefGoogle Scholar
  2. 2.
    Mattia E, Otto S (2015) Supramolecular systems chemistry. Nat Mater.  https://doi.org/10.1038/NNANO.2014.337
  3. 3.
    Liu K, Kang Y, Wang Z, Zhang X (2013). Adv Mater 25:5530CrossRefGoogle Scholar
  4. 4.
    Stoffelen C, Huskens J (2016). Small 12(1):9798CrossRefGoogle Scholar
  5. 5.
    Qian X, Gong W, Li X, Fang L, Kuang X, Ning G (2016). Chem Eur J 22:6881CrossRefGoogle Scholar
  6. 6.
    Wbber MJ, Appel EA, Meijer EW, Langer R (2016). Nat Mater 15:13CrossRefGoogle Scholar
  7. 7.
    Tirrell M, Kokkoli E, Biesalski M (2002). Surf Sci 500:61CrossRefGoogle Scholar
  8. 8.
    Lehn J-M (1993). Science 260:16CrossRefGoogle Scholar
  9. 9.
    Wang H, Yan H, Zhu Y, Chen W, Zhang J, Wang C (2016). J Polym Res 23:73CrossRefGoogle Scholar
  10. 10.
    Hu D, Chen K, Zou G, Zhang Q (2012). J Polym Res 19:9983CrossRefGoogle Scholar
  11. 11.
    Li L, Smitthipong W, Zeng H (2015). Polym Chem 6:353CrossRefGoogle Scholar
  12. 12.
    Chollakup R, Smitthipong W, Chworos A (2010). Polym Chem 1:658CrossRefGoogle Scholar
  13. 13.
    Chollakup R, Smitthipong W, Eisenbach CD, Tirrell (2010). Macromolecules 43(5):2518CrossRefGoogle Scholar
  14. 14.
    Peters GM, Davis JT (2016). Chem Soc Rev.  https://doi.org/10.1039/c6cs00183a
  15. 15.
    Liu L, Xia D, Klausen LH, Dong M (2014). Int J Mol Sci 15(2):1901CrossRefGoogle Scholar
  16. 16.
    Koltover I, Salditt T, Rädler JO, Safinya CR (1998). Science 281(5373):78CrossRefGoogle Scholar
  17. 17.
    Vinogradova OI, Lebedeva OV, Vasilev K, Gong H, Garcia-Turiel J, Kim BS (2005). Biomacromolecules 6(3):1495CrossRefGoogle Scholar
  18. 18.
    Hoshino Y, Tajima S, Nakayama H, Okahata Y (2002). Macromol Rapid Commun 23:253CrossRefGoogle Scholar
  19. 19.
    Inoue Y, Fukushima T, Hayakawa T, Takeuchi H, Kaminishi H, Miyazaki K, Okahata Y (2003). J Biomed Mater Res A 65A:204CrossRefGoogle Scholar
  20. 20.
    Smitthipong W, Chworos A, Lin B, Neumann T, Gajiria S, Jaeger L, Tirrell M (2008) Mater Res Soc Symp Proc 1094 paper number 1094-DD06-05Google Scholar
  21. 21.
    Kang M, Kim H, Leal C (2016). Curr Opin Colloid Interface Sci.  https://doi.org/10.1016/j.cocis.2016.09.006
  22. 22.
    Smitthipong W, Neumann T, Chworos A, Jaeger L, Tirrell M (2008). Macromol Symp 264:13CrossRefGoogle Scholar
  23. 23.
    Neumann T, Gajria S, Bouxsein NF, Jaeger L, Tirrel M (2010). J Am Chem Soc 132(20):7025CrossRefGoogle Scholar
  24. 24.
    Smitthipong W, Neumann T, Gajria S, Li Y, Chworos A, Jaeger L, Tirrell M (2009). Biomacromolecules 10:221CrossRefGoogle Scholar
  25. 25.
    Okahata Y, Kawasaki T (2005). Top Curr Chem 260:57CrossRefGoogle Scholar
  26. 26.
    Schmidt SW, Kersch A, Beyer MK, Clausen-Schaumann H (2011). Phys Chem Chem Phys 13:5994CrossRefGoogle Scholar
  27. 27.
    Li Y, Nese A, Matyjaszewski K, Sheiko SS (2013). Macromolecules 46(18):7196CrossRefGoogle Scholar
  28. 28.
    Chollakup R, Smitthipong W, Chworos A (2014). RSC Adv 4(58):30648CrossRefGoogle Scholar
  29. 29.
    Chollakup R, Smitthipong W (2012). Polym Chem 3:2350CrossRefGoogle Scholar
  30. 30.
    Chollakup R, Smitthipong W, Chworos A (2013). RSC Adv 3:4745CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Pitchaya Pakornpadungsit
    • 1
  • Wirasak Smitthipong
    • 1
    • 2
  • Arkadiusz Chworos
    • 3
  1. 1.Specialized Center of Rubber and Polymer Materials for Agriculture and Industry (RPM), Department of Materials Science, Faculty of ScienceKasetsart UniversityBangkokThailand
  2. 2.Office of Natural Rubber Research ProgramThe Thailand Research Fund (TRF)BangkokThailand
  3. 3.Centre of Molecular and Macromolecular StudiesPolish Academy of SciencesLodzPoland

Personalised recommendations