Journal of Polymer Research

, 25:46 | Cite as

Rheological, crystallization and foaming behaviors of high melt strength polypropylene in the presence of polyvinyl acetate

  • Yu Li
  • Chunmeng Pan
  • Zhong Xin
  • Shuai Zhou
  • Xin Meng
  • Shicheng Zhao


Polyvinyl acetate (PVAc) is a kind of CO2-philic materials with high solubility of CO2. For improving the supercritical carbon dioxide (Sc-CO2) foaming behavior of isotactic polypropylene (iPP), a high melt strength polypropylene (HMSPP) was prepared using styrene (St) as grafting monomer. The effect of PVAc on the preparation, rheological, crystallization and foaming behaviors of HMSPP was investigated. The high temperature gel permeation chromatography (HT-GPC) results showed that the PVAc had a promotive effect on melt grafting reaction. With the addition of PVAc, the weight-average molecular weight (Mw) of HMSPP increased from 217,158 to 240,733 g/mol. Thus, the HMSPP presented higher complex viscosity and storage modular, and lower loss angle, which indicated that the melt viscosity and melt strength of HMSPP was increased by adding PVAc. The crystallization behavior of HMSPP was investigated using differential scanning calorimetry (DSC). Double crystallization peaks were observed on the DSC cooling curves of HMSPP in the presence of PVAc, which was ascribed to incomplete molten of iPP with long chain branching (LCB) structure at low end melting temperature. Moreover, the prepared HMSPP exhibited better foaming behavior in the presence of PVAc. With the addition of PVAc, the average cell diameter of HMSPP decreased from 93 to 59 μm, and the cell density increased from 2.83 × 107 to 9.79 × 107 cell/cm3.


Polyvinyl acetate High melt strength polypropylene Rheological behavior Crystallization behavior Foaming behavior 



The authors gratefully acknowledge the financial support of this work by National Key R&D Program of China (2016YFB0302201), National Natural Science Foundation of China (Grants 21476085 and 21606084), the Fundamental Research Funds for the Central Universities (222201717025), and financial support of Ministry of Science and Technology of People’s Republic of China (The people’s Republic of China 863 Program, Grant No.2015AA034003).


  1. 1.
    Liao R, Yu W, Zhou C (2010) Rheological control in foaming polymeric materials: II. Semi-crystalline polymers. Polymer 51(26):6334–6345CrossRefGoogle Scholar
  2. 2.
    Zhai W, Wang H, Yu J, Dong J-Y, He J (2008) Foaming behavior of isotactic polypropylene in supercritical CO2 influenced by phase morphology via chain grafting. Polymer 49(13):3146–3156CrossRefGoogle Scholar
  3. 3.
    Wang K, Wu F, Zhai W, Zheng W (2013) Effect of polytetrafluoroethylene on the foaming behaviors of linear polypropylene in continuous extrusion. J Appl Polym Sci 129(4):2253–2260CrossRefGoogle Scholar
  4. 4.
    An Y, Zhang Z, Wang Y, Qiu J, Tang T (2010) Structure and properties of high melt strength polypropylene prepared by combined method of blending and crosslinking. J Appl Polym Sci 116(3):1739–1746Google Scholar
  5. 5.
    Stange J, Münstedt H (2006) Effect of long-chain branching on the foaming of polypropylene with Azodicarbonamide. J Cell Plast 42(6):445–467CrossRefGoogle Scholar
  6. 6.
    Li Z, Chen M, Ma W (2016) Promoting effect of crystallization on the foaming behavior in polypropylene homopolymer/polypropylene block copolymer blends. Polym Eng Sci 56(10):1175–1181CrossRefGoogle Scholar
  7. 7.
    Liu H, Chuai C, Iqbal M, Wang H, Kalsoom BB, Khattak M, Qasim Khattak M (2011) Improving foam ability of polypropylene by crosslinking. J Appl Polym Sci 122(2):973–980CrossRefGoogle Scholar
  8. 8.
    Song G, Yang S, Yang C, She X (2006) Foaming polypropylene prepared by a novel one-step silane-grafting and crosslinking method. J Porous Mater 13(3–4):297–301CrossRefGoogle Scholar
  9. 9.
    Yoshiga A, Otaguro H, Parra DF, Lima LFCP, Lugao AB (2009) Controlled degradation and crosslinking of polypropylene induced by gamma radiation and acetylene. Polym Bull 63(3):397–409CrossRefGoogle Scholar
  10. 10.
    Romani F, Corrieri R, Braga V, Ciardelli F (2002) Monitoring the chemical crosslinking of propylene polymers through rheology. Polymer 43(4):1115–1131CrossRefGoogle Scholar
  11. 11.
    Zhou S, Zhao S, Xin Z (2015) Preparation and foamability of high melt strength polypropylene based on grafting vinyl polydimethylsiloxane and styrene. Polym Eng Sci 55(2):251–259CrossRefGoogle Scholar
  12. 12.
    Zhou S, Zhao S, Xin Z, Wang W (2014) A novel strategy for achieving high melt strength polypropylene and an investigation of its Foamability. J Macromol Sci Part B Phys 53(10):1695–1714CrossRefGoogle Scholar
  13. 13.
    Li S, Xiao M, Zheng S, Xiao H, Guan Y, Zheng A (2009) The characterization of rheological properties of melt grafting polypropylene for foaming. Polym Bull 63(1):111–123CrossRefGoogle Scholar
  14. 14.
    Zhang Z, Wan D, Xing H, Zhang Z, Tan H, Wang L, Zheng J, An Y, Tang T (2012) A new grafting monomer for synthesizing long chain branched polypropylene through melt radical reaction. Polymer 53(1):121–129CrossRefGoogle Scholar
  15. 15.
    Yao Z, Z-Q L, Zhao X, B-W Q, Shen Z-C, Cao K (2009) Synthesis and characterization of high-density polypropylene-grafted polyethylene via a macromolecular reaction and its rheological behavior. J Appl Polym Sci 111(5):2553–2561CrossRefGoogle Scholar
  16. 16.
    Li S, Xiao M, Wei D, Xiao H, Hu F, Zheng A (2009) The melt grafting preparation and rheological characterization of long chain branching polypropylene. Polymer 50(25):6121–6128CrossRefGoogle Scholar
  17. 17.
    Tian J, Yu W, Zhou C (2006) The preparation and rheology characterization of long chain branching polypropylene. Polymer 47(23):7962–7969CrossRefGoogle Scholar
  18. 18.
    Zhang Z, Xing H, Qiu J, Jiang Z, Yu H, Du X, Wang Y, Ma L, Tang T (2010) Controlling melt reactions during preparing long chain branched polypropylene using copper N,N-dimethyldithiocarbamate. Polymer 51(7):1593–1598CrossRefGoogle Scholar
  19. 19.
    Chaudhary BI, Sengupta SS, Cogen JM, Curto M (2011) Silane grafting and moisture crosslinking of polypropylene. Polym Eng Sci 51(2):237–246CrossRefGoogle Scholar
  20. 20.
    Liu NC, Yao GP, Huang H (2000) Influences of grafting formulations and processing conditions on properties of silane grafted moisture crosslinked polypropylenes. Polymer 41(12):4537–4542CrossRefGoogle Scholar
  21. 21.
    Kim BK, Kim KJ (1993) Cross-linking of polypropylene by peroxide and multifunctional monomer during reactive extrusion. Adv Polym Technol 12(3):263–269CrossRefGoogle Scholar
  22. 22.
    Li Y, Xie X-M, Guo B-H (2001) Study on styrene-assisted melt free-radical grafting of maleic anhydride onto polypropylene. Polymer 42(8):3419–3425CrossRefGoogle Scholar
  23. 23.
    Saiz-Arroyo C, de Saja JA, Velasco JI, Rodríguez-Pérez MÁ (2012) Moulded polypropylene foams produced using chemical or physical blowing agents: structure–properties relationship. J Mater Sci 47(15):5680–5692CrossRefGoogle Scholar
  24. 24.
    Rizvi A, Tabatabaei A, Barzegari MR, Mahmood SH, Park CB (2013) In situ fibrillation of CO2-philic polymers: sustainable route to polymer foams in a continuous process. Polymer 54(17):4645–4652CrossRefGoogle Scholar
  25. 25.
    Ruiz JAR, Cloutet E, Dumon M (2012) Investigation of the nanocellular foaming of polystyrene in supercritical CO2 by adding a CO2-philic perfluorinated block copolymer. J Appl Polym Sci 126(1):38–45CrossRefGoogle Scholar
  26. 26.
    Shen Z, McHugh MA, Xu J, Belardi J, Kilic S, Mesiano A, Bane S, Karnikas C, Beckman E, Enick R (2003) CO2-solubility of oligomers and polymers that contain the carbonyl group. Polymer 44(5):1491–1498CrossRefGoogle Scholar
  27. 27.
    Bray CL, Tan B, Wood CD, Cooper AI (2005) High-throughput solubility measurements of polymer libraries in supercritical carbon dioxide. J Mater Chem 15(4):456–459CrossRefGoogle Scholar
  28. 28.
    Kumar V, Suh NP (2010) A process for making microcellular thermoplastic parts. Polym Eng Sci 30(20):1323–1329CrossRefGoogle Scholar
  29. 29.
    An Y, Zhang Z, Bi W, Wang Y, Tang T (2008) Characterization of high melt strength polypropylene synthesized via silane grafting initiated by in situ heat induction reaction. J Appl Polym Sci 110(6):3727–3732CrossRefGoogle Scholar
  30. 30.
    Wood-Adams PM, Dealy JM, deGroot AW, Redwine OD (2000) Effect of molecular structure on the linear viscoelastic behavior of polyethylene. Macromolecules 33(20):7489–7499CrossRefGoogle Scholar
  31. 31.
    FH S, Huang HX (2010) Influence of polyfunctional monomer on melt strength and rheology of long-chain branched polypropylene by reactive extrusion. J Appl Polym Sci 116(5):2557–2565Google Scholar
  32. 32.
    Graebling D (2002) Synthesis of branched polypropylene by a reactive extrusion process. Macromolecules 35(12):4602–4610CrossRefGoogle Scholar
  33. 33.
    Lohse DJ, Milner ST, Fetters LJ, Xenidou M, Hadjichristidis N, Mendelson RA, García-Franco CA, Lyon MK (2002) Well-defined, model long chain branched polyethylene. 2. Melt rheological behavior. Macromolecules 35(8):3066–3075CrossRefGoogle Scholar
  34. 34.
    Ruymbeke E, Stéphenne V, Daoust D, Godard P, Keunings R, Bailly C (2005) A sensitive method to detect very low levels of long chain branching from the molar mass distribution and linear viscoelastic response. J Rheol 49(6):1503–1520CrossRefGoogle Scholar
  35. 35.
    Jørgensen JK, Redford K, Ommundsen E, Stori A (2007) Molecular structure and shear rheology of long chain branched polypropylene formed by light cross-linking of a linear precursor with 1,3-benzenedisulfonyl azide. J Appl Polym Sci 106(2):950–960CrossRefGoogle Scholar
  36. 36.
    Zhang R, Cai C, Liu Q, Hu S (2016) Enhancing the melt strength of poly(lactic acid) via micro-crosslinking and blending with poly(butylene Adipate-co-butylene terephthalate) for the preparation of foams. J Polym Environ 25(4):1335–1341CrossRefGoogle Scholar
  37. 37.
    Bhattacharya S, Gupta RK, Jollands M, Bhattacharya SN (2009) Foaming behavior of high-melt strength polypropylene/clay nanocomposites. Polym Eng Sci 49(10):2070–2084CrossRefGoogle Scholar
  38. 38.
    Tian J, Yu W, Zhou C (2006) Crystallization kinetics of linear and long-chain branched polypropylene. J Macromol Sci Part B Phys 45(5):969–985CrossRefGoogle Scholar
  39. 39.
    Xu X, Park CB, Xu D, Pop-Iliev R (2003) Effects of die geometry on cell nucleation of PS foams blown with CO2. Polym Eng Sci 43(7):1378–1390CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Yu Li
    • 1
  • Chunmeng Pan
    • 1
  • Zhong Xin
    • 1
  • Shuai Zhou
    • 1
  • Xin Meng
    • 1
  • Shicheng Zhao
    • 1
  1. 1.Department of Product Engineering, Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations