Advertisement

Journal of Polymer Research

, 25:50 | Cite as

Characterization of triple electrospun layers of PVDF for direct contact membrane distillation process

  • Adeleh Ebrahimi
  • Mohammad Karimi
  • Farzin Zokaee Ashtiani
ORIGINAL PAPER
  • 171 Downloads

Abstract

Recently, electrospinning technique was applied successfully to fabricate porous hydrophobic membranes for MD applications. In this work, a novel triple layer configuration with diameter gradient for PVDF nanofiber membranes is proposed, with the objective of to minimize mass transfer resistance and heat loss. In outer layers of these membranes, the minimum concentration of PVDF (20 wt%) was used to produce bead-free nanofibers with thinner diameters and middle layers were composed of thicker nanofibers formed at higher polymer concentrations (21.5-26 wt%). Characterization of prepared membranes was conducted by the measurement of porosity, thickness, liquid entry pressure (LEP), scanning electron microscopy (SEM), contact angle, thermal and mechanical properties. Direct contact membrane distillation performance of fabricated membranes was tested using 42 g/L NaCl as feed solution. Water permeate flux of triple layer membranes (27.8-31.5 kg/m2 h) was found to be considerably higher than that obtained from single layer membrane (15.4 kg/m2 h), indicating the proposed configuration can effectively improve evaporation efficiency.

Keywords

Electrospinning Nanofiber membranes PVDF Direct contact membrane distillation 

References

  1. 1.
    Khalifa A, Ahmad H, Antar M et al (2017) Experimental and theoretical investigations on water desalination using direct contact membrane distillation. Desalination 404:22–34CrossRefGoogle Scholar
  2. 2.
    Tijing LD, Choi JS, Lee S et al (2014) Recent progress of membrane distillation using electrospun nanofibrous membrane. J Membr Sci 453:435–462CrossRefGoogle Scholar
  3. 3.
    Kim S, Lee DW, Cho J (2016) Application of direct contact membrane distillation process to treat anaerobic digestate. J Membr Sci 511:20–28CrossRefGoogle Scholar
  4. 4.
    Alkhudhiri A, Darwish N, Hilal N (2012) Membrane distillation: A comprehensive review. Desalination 287:2–18CrossRefGoogle Scholar
  5. 5.
    Meng S, Ye Y, Mansouri J, Chen V (2014) Fouling and crystallisation behaviour of superhydrophobic nano-composite PVDF membranes in direct contact membrane distillation. J Membr Sci 463:102–112CrossRefGoogle Scholar
  6. 6.
    Fan H, Peng Y, Li Z et al (2013) Preparation and characterization of hydrophobic PVDF membranes by vapor-induced phase separation and application in vacuum membrane distillation. J Polym ResGoogle Scholar
  7. 7.
    Li B, Sirkar KK (2001) Novel membrane and device for direct contact membrane distillation-based desalination process. Ind Eng Chem Res 43(17):5300–5309Google Scholar
  8. 8.
    El-Bourawi MS, Ding Z, Ma R, Khayet M (2006) A framework for better understanding membrane distillation separation process. J Membr Sci 285:4–29CrossRefGoogle Scholar
  9. 9.
    Prince JA, Singh G, Rana D et al (2012) Preparation and characterization of highly hydrophobic poly(vinylidene fluoride) - Clay nanocomposite nanofiber membranes (PVDF-clay NNMs) for desalination using direct contact membrane distillation. J Membr Sci 397–398:80–86CrossRefGoogle Scholar
  10. 10.
    Feng C, Khulbe KC, Matsuura T et al (2008) Production of drinking water from saline water by air-gap membrane distillation using polyvinylidene fluoride nanofiber membrane. J Membr Sci 311:1–6CrossRefGoogle Scholar
  11. 11.
    Tijing LD, Woo YC, Shim WG et al (2016) Superhydrophobic nanofiber membrane containing carbon nanotubes for high-performance direct contact membrane distillation. J Membr Sci 502:158–170CrossRefGoogle Scholar
  12. 12.
    Liao Y, Wang R, Fane AG (2013) Engineering superhydrophobic surface on poly(vinylidene fluoride) nanofiber membranes for direct contact membrane distillation. J Membr Sci 440:77–87CrossRefGoogle Scholar
  13. 13.
    Lee EJ, An AK, He T et al (2016) Electrospun nanofiber membranes incorporating fluorosilane-coated TiO2 nanocomposite for direct contact membrane distillation. J Membr Sci 520:145–154CrossRefGoogle Scholar
  14. 14.
    Wu HY, Wang R, Field RW (2014) Direct contact membrane distillation: An experimental and analytical investigation of the effect of membrane thickness upon transmembrane flux. J Membr Sci 470:2257–2265Google Scholar
  15. 15.
    Khayet M, Mengual JI, Matsuura T (2005) Porous hydrophobic/hydrophilic composite membranes: Application in desalination using direct contact membrane distillation. J Membr Sci 252:101–113CrossRefGoogle Scholar
  16. 16.
    Zhu H, Wang H, Wang F et al (2013) Preparation and properties of PTFE hollow fiber membranes for desalination through vacuum membrane distillation. J Membr Sci 446:145–153CrossRefGoogle Scholar
  17. 17.
    Stepanyan R, Subbotin AV, Cuperus L et al (2016) Nanofiber diameter in electrospinning of polymer solutions: Model and experiment. Polym (United Kingdom) 97:428–439Google Scholar
  18. 18.
    Essalhi M, Khayet M (2013) Self-sustained webs of polyvinylidene fluoride electrospun nanofibers at different electrospinning times: 1. Desalination by direct contact membrane distillation. J Memb Sci 433:167–179CrossRefGoogle Scholar
  19. 19.
    Yao M, Woo YC, Tijing LD et al (2016) Effect of heat-press conditions on electrospun membranes for desalination by direct contact membrane distillation. Desalination 378:80–91CrossRefGoogle Scholar
  20. 20.
    Moradi R, Karimi-Sabet J, Shariaty-niassar M, Amini Y (2016) Experimental investigation of nanofibrous poly(vinylidene fluoride) membranes for desalination through air gap membrane distillation process. Korean J Chem Eng 33:2953–2960CrossRefGoogle Scholar
  21. 21.
    Francis L, Ghaffour N, Alsaadi AS et al (2014) PVDF hollow fiber and nanofiber membranes for fresh water reclamation using membrane distillation. J Mater Sci 49:2045–2053CrossRefGoogle Scholar
  22. 22.
    Matabola KP, Moutloali RM (2013) The influence of electrospinning parameters on the morphology and diameter of poly(vinyledene fluoride) nanofibers- Effect of sodium chloride. J Mater Sci 48:5475–5482CrossRefGoogle Scholar
  23. 23.
    Essalhi M, Khayet M (2014) Self-sustained webs of polyvinylidene fluoride electrospun nano-fibers: Effects of polymer concentration and desalination by direct contact membrane distillation. J Membr Sci 454:133–143CrossRefGoogle Scholar
  24. 24.
    Liao Y, Wang R, Tian M et al (2013) Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. J Membr Sci 425–426:30–39CrossRefGoogle Scholar
  25. 25.
    Ziabari M, Mottaghitalab V, Haghi AK (2010) A new approach for optimization of electrospun nanofiber formation process. Korean J Chem Eng 27:340–354CrossRefGoogle Scholar
  26. 26.
    Lalia BS, Guillen-Burrieza E, Arafat HA, Hashaikeh R (2013) Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) electrospun membranes for direct contact membrane distillation. J Membr Sci 428:104–115CrossRefGoogle Scholar
  27. 27.
    Shenoy SL, Bates WD, Frisch HL, Wnek GE (2005) Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer-polymer interaction limit. Polymer (Guildf) 46:3372–3384CrossRefGoogle Scholar
  28. 28.
    Supaphol P, Mit-Uppatham C, Nithitanakul M (2005) Ultrafine electrospun polyamide-6 fibers: Effect of emitting electrode polarity on morphology and average fiber diameter. J Polym Sci Part B Polym Phys 43:3699–3712CrossRefGoogle Scholar
  29. 29.
    Costa P, Silva J, Sencadas V et al (2009) The effect of fibre concentration on the α to β-phase transformation, degree of crystallinity and electrical properties of vapour grown carbon nanofibre/poly(vinylidene fluoride) composites. Carbon N Y 47:2590–2599CrossRefGoogle Scholar
  30. 30.
    Nasir M, Matsumoto H, Danno T et al (2006) Control of diameter, morphology, and structure of PVDF nanofiber fabricated by electrospray deposition. J Polym Sci Part B Polym Phys 44:779–786CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Adeleh Ebrahimi
    • 1
  • Mohammad Karimi
    • 1
  • Farzin Zokaee Ashtiani
    • 2
  1. 1.Department of Textile EngineeringAmirkabir University of TechnologyTehranIran
  2. 2.Department of Chemical EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations