Advertisement

Journal of Polymer Research

, 25:36 | Cite as

Structure of polyvinyl alcohol-borax ferrogels: a small angle neutron scattering study

  • Mathias B. Lawrence
  • S. Abbas
  • V. K. Aswal
ORIGINAL PAPER
  • 112 Downloads

Abstract

The structural changes in Polyvinyl alcohol-borax hydrogels doped with carbonyl iron have been investigated, as a function of dopant and cross-linker concentrations, using Small Angle Neutron Scattering. For the undoped hydrogels and the ferrogels with 40 mg/ml magnetic particle concentrations, correlation length values show a consistent decrease with increase in borax concentration. In ferrogels with relatively lower (20 mg/ml) magnetic particle concentrations, the increase in borax concentration leads to an initial increase in correlation length followed by a decrease. The difference in behaviour is explained on the basis of concentration-dependent variations in sedimentation and coagulation of the magnetic particles which affect the shielding effect exerted by the free Na+ ions in the solvent.

Keywords

PVA Borax Carbonyl iron Ferrogels SANS 

Notes

Acknowledgements

The authors express their gratitude to UGC-DAE-CSR, Mumbai Centre for funding this work and providing access to neutron beam facilities under the Collaborative Research Scheme CRS-M-217. The carbonyl iron used in the present study was kindly gifted by ISP Technologies.

References

  1. 1.
    Okuzaki H (2014) Progress and current status of materials and properties of soft actuators. Soft Actuators, Chapter 1Google Scholar
  2. 2.
    Zhang J, Huang Q, Du J (2016) Recent advances in magnetic hydrogels. Polym Int 65(12):1365–1372CrossRefGoogle Scholar
  3. 3.
    D’Errico G, De Lellis M, Mangiapia G, Tedeschi A, Ortona O, Fusco S, Borzacchiello A, Ambrosio L (2005) Structural and mechanical properties of UV-photo-cross-linked poly(N-vinyl-2-pyrrolidone) hydrogels. Biomacromolecules 9:231–240CrossRefGoogle Scholar
  4. 4.
    Mendoza Zelis P, Muraca D, Gonzalez JS, Pasquevich GA, Alvarez VA, Pirota KR, Sanchez FH (2013) Magnetic properties study of iron-oxide nanoparticles/PVA Ferrogels with potential biomedical applications. J Nanopart Res 15:1613CrossRefGoogle Scholar
  5. 5.
    Szabo D, Czako-Nagy I, Zrinyi M, Vertes A (2000) Magnetic and Mossbauer studies of magnetite-loaded polyvinyl alcohol hydrogels. J Colloid Interface Sci 221:166–172CrossRefGoogle Scholar
  6. 6.
    Sunaryono, Taufiq A, Putra EG, Okazawa A, Watanabe I, Kojima N, Ragmai S, Soontaranon S, Zainorr M, Pratapa S, Darminto (2016) Small-angle X-ray scattering study on PVA/Fe3O4 magnetic hydrogels. NANO: Brief Reports and Reviews 11(3):0650827CrossRefGoogle Scholar
  7. 7.
    Liu T-Y, Hu S-H, Liu K-H, Liu K-M, Chen S-Y (2008) Study on controlled drug permeation of magnetic-sensitive Ferrogels: effect of Fe3O4 and PVA. J Control Release 126:228–236CrossRefGoogle Scholar
  8. 8.
    Raikher YL, Stolbov OV (2005) Magnetodeformational effect in Ferrogel objects. J Magn Magn Mater 289:62–65CrossRefGoogle Scholar
  9. 9.
    Hernandez R, Lopez G, Lopez D, Vazquez M, Mijangos C (2007) Magnetic characterisation of polyvinyl alcohol Ferrogels and films. J Mater Res 22(8):2211–2216CrossRefGoogle Scholar
  10. 10.
    Mitsumata T, Ikeda K, Gong JP, Osada Y, Szabo D, Zrinyi M (1999) Magnetism and compressive modulus of magnetic fluid containing gels. J Appl Phys 85(12):8451–8455CrossRefGoogle Scholar
  11. 11.
    Babincova M, Lesozczynska D, Sourivong P, Cicimanec P, Babinec P (2001) Superparamagnetic gel as a novel material for electromagnetically induced hyperthermia. J Magn Magn Mater 225:109–112CrossRefGoogle Scholar
  12. 12.
    Shafee EE, Naguib HF (2003) Water sorption in cross-linked poly(vinyl alcohol) networks. Polymer 44:1647–1653CrossRefGoogle Scholar
  13. 13.
    Manna U, Patil S (2009) Borax mediated layer-by-layer self-assembly of neutral poly(vinyl alcohol) and chitosan. J. Phys Chem B 113:9137–9142CrossRefGoogle Scholar
  14. 14.
    Langer R, Peppas NA (2003) Advances in biomaterials, drug delivery and bionanotechnology. Bioeng Food Nat Products 49(12):2990–3006Google Scholar
  15. 15.
    Ricciardi R, Mangiapia G, Le Celso F, Paduano L, Triolo R, Aurienma F, De Rosa C, Lauprétre F (2005) Structural Organization of Poly(vinyl alcohol) hydrogels obtained by freezing and thawing techniques, Chem Mater, 17, 1183–1189Google Scholar
  16. 16.
    N.A. Peppas, ed. (1986) Hydrogels in medicines and pharmacy, vol 1. CRC Press, Boca Raton, Florida USAGoogle Scholar
  17. 17.
    Carretti E, Grassi S, Cossalter M, Natali I, Caminati G, Weiss RG, Baglioni P, Dei L (2009) Poly(vinyl alcohol)-borate hydro/Cosolvent gels: viscoelastic properties, solubilizing power and application to art conservation. Lang 25(15):8656–8662Google Scholar
  18. 18.
    Kale SN, Mona J, Dhobale S, Thite T, Laware SL (2011) Intramolecular and intermolecular crosslinked poly(vinyl alcohol)-borate complexes for the sustained release of Fertilisers and enzymes. J Appl Polym Sci 121:2450–2457CrossRefGoogle Scholar
  19. 19.
    Marin E, Rojas J, Ciro Y (2014) A review of polyvinyl alcohol derivatives: promising materials for pharmaceutical and biomedical applications. Afr J Pharm Pharmacol 8(24):674–684Google Scholar
  20. 20.
    Gonsalez JS, Hoppe CE, Muraca D, Sanchez FH, Alvarez VA (2011) Synthesis and characterization of PVA Ferrogels obtained through a one-pot freezing-thawing procedure. Colloid Polym Sci 289:1839–1846CrossRefGoogle Scholar
  21. 21.
    Wu J, Gong X, Fan Y, Xin H (2011) Physically crosslinked poly(vinyl alcohol) hydrogels with magnetic field controlled modulus. Soft Matter 7:6205–6212CrossRefGoogle Scholar
  22. 22.
    Park G, McLaurin EJ, Faidley LE (2008) Characterisation of the actuator behaviour of blended-system Ferrogels. Proceedings of SPIE Smart Structures and Materials, vol. 6929, p 69292C1–69292C10Google Scholar
  23. 23.
    Faidley L, Macias D, Harrington E (2008) Cyclic actuator behaviour of ferrogels. Proceedings of the ASME conference on smart materials, adaptive structures and intelligent systems, SMAS1808. Ellicot City, p SMAS1S2008–530Google Scholar
  24. 24.
    Faidley LE, McLaurin EJ (2009) Lumped parameter modeling of the actuator behaviour of ferrogels. Proceedings of SPIE, vol. 7289. P 72891T-1–72891T-9Google Scholar
  25. 25.
    Faidley LE, Han Y, Tucker K, Timmons S, Hong W (2010) Axial strain of ferrogels under cyclic magnetic fields. Smart Mater Struct 19:075001CrossRefGoogle Scholar
  26. 26.
    Mortensen K (2001) Structural studies of polymer systems using small-angle neutron scattering. In: Nalwa HS (ed) advanced functional molecules and polymers, vol. 2, processing and spectroscopy, Amsterdam: overseas publishers association, N.V., p 223-269Google Scholar
  27. 27.
    Hanmouda B (2010) SANS from polymers – review of the recent literature. Polym Rev 50(1):14–39CrossRefGoogle Scholar
  28. 28.
    Richter D (2000) Neutron scattering in polymer physics. Physica B 276-278:22–29CrossRefGoogle Scholar
  29. 29.
    Aswal VK, Goyal PS (2000) Small angle neutron scattering diffractometer at Dhruva reactor. Curr Sci 79(7):947–953Google Scholar
  30. 30.
    Horkay F, Hecht A-M, Mallam S, Geissler E, Rennie AR (1991) Macroscopic and microscopic thermodynamic observations in swollen poly (vinyl acetate) networks. Macromolecules 24:2896–2902CrossRefGoogle Scholar
  31. 31.
    Lin H-L, Liu W-H, Liu Y-F, Cheng C-H (2002) Complexation equilibrium constants of poly(vinyl alcohol)-borax dilute aqueous solutions – consideration of electrostatic charge repulsion and free ions charge shielding effect. J Polym Res 9:233–238CrossRefGoogle Scholar
  32. 32.
    Chen CY, Yu T-L (1997) Dynamic light scattering of poly(vinyl alcohol)-borax aqueous solution near overlap concentration. Polymer 38(9):2019–2025CrossRefGoogle Scholar
  33. 33.
    Keita G, Ricard A (1990) Phase diagram of borate-PVA system: sol-gel transition and demixtion. Polym Bull 24:633–640CrossRefGoogle Scholar
  34. 34.
    Keita G, Ricard A, Audebert R, Pezron E, Pezron L (1995) The poly(vinyl alcohol)-borax system: influence of polyelectrolyte effects on phase diagrams. Polymer 36:49–54CrossRefGoogle Scholar
  35. 35.
    Leibler L, Pezron E, Pincus PA (1988) Viscosity behaviour of polymer solutions in the presence of complexing ions. Polymer 29:1105–1109CrossRefGoogle Scholar
  36. 36.
    Lin H-L, Yu TL, Cheng C-H (2000) Reentrant behaviour of poly(vinyl alcohol)-borax semidilute aqueous solutions. Colloid Polym Sci 278:187–194CrossRefGoogle Scholar
  37. 37.
    Lim ST, Cho MS, Jang IB, Choi HJ, Jhou MS (2004) Magnetorheology of carbonyl-iron suspensions with submicron-sized filler. IEEE Trans Magn 40(4):3033–3035CrossRefGoogle Scholar
  38. 38.
    Teixeira AV, Morfin I, Ehrburger-Dolle F, Rochas C, Panine P, Licinio P, Geissler E (2003) Structure and magnetic properties of dilute Ferrofluids suspended in gels. Compos Sci Technol 63:1105–1111CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsSt. Xavier′s CollegeMapucaIndia
  2. 2.Solid State Physics DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations