Journal of Polymer Research

, 25:48 | Cite as

Processing and characterization of natural rubber/stearic acid-tetra-needle-like zinc oxide whiskers medical antibacterial composites

  • Xi Chen
  • Zhifen Wang
  • Jie Wu


The Tetra-Needle-like zinc oxide whiskers (T-ZnOw) were modified by stearic acid, and Natural rubber/Stearic acid-T-ZnOw medical antibacterial composites were prepared by blending the Stearic acid-T-ZnOw with natural rubber latex. The morphology, mechanical properties, thermal stability, antibacterial property and water absorption of composites were investigated. The results show that the incorpation of Stearic acid-T-ZnOw into rubber matrix leads to a significantly betterment in the over-all properties of composites when the Stearic acid-T-ZnOw loading is less than 6%. The Stearic acid-T-ZnOw act as a skeleton in the rubber matrix, with its tetra-needles tightly inserting into rubber matrix. It plays an important role in improving the performance of natural rubber. When in nitrogen atmosphere loading of 5 wt%, all the performance of composite achieve optimum results. The Natural rubber/Stearic acid-T-ZnOw has great prospects in producing medical products with greens environmental protection and high performance.


Natural rubber latex Tetra-needle-like zinc oxide whiskers Medical Composites 



The authors gratefully acknowledge supports by the Educational Research Project for Young and Middle-aged teachers in Fujian province (JAT170568), and the National Natural Science Foundation of China (No.51663008).


  1. 1.
    Bode H, Kerkhoff K, Jendrossek D (2001) Bacterial degradation of natural and synthetic rubber. Biomacromolecules 2:295–303CrossRefGoogle Scholar
  2. 2.
    Liu Y, Li L, Wang Q, Zhang X (2011) Fracture properties of natural rubber filled with hybrid carbon black/nanoclay. J Polym Res 16:859–867CrossRefGoogle Scholar
  3. 3.
    Sanguansap K, Suteewong T, Saendee P, Buranabunya U, Tangboriboonrat P (2005) Composite natural rubber based latex particles: a novel approach. Polymer 46:1373–1378CrossRefGoogle Scholar
  4. 4.
    Jamil M, Ahmad I, Abdullah I (2006) Effects of rice husk filler on the mechanical and thermal properties of liquid natural rubber compatibilized high-density polyethylene/natural rubber blends. J Polym Res 13:315–321CrossRefGoogle Scholar
  5. 5.
    Peng Z, Kong L, Li S, Chen Y, Huang M (2007) Self-assembled natural rubber/silica nanocomposites: its preparation and characterization. Compos Sci Technol 67:3130–3139CrossRefGoogle Scholar
  6. 6.
    Yang J, Cao S, Xin J, Chen X (2013) Calcium carbonate deposition on layer-by-layer systems assembled from star polymers. J Polym Res 20:1–10Google Scholar
  7. 7.
    Cai H, Li S, Tian G, Wang H, Wang J (2003) Reinforcement of natural rubber latex film by ultrafine calcium carbonate. J Appl Polym Sci 87:982–985CrossRefGoogle Scholar
  8. 8.
    Manroshan S, Baharin A (2005) Effect of nanosized calcium carbonate on the mechanical properties of latex film. Appl Polym Sci 96:1550–1556CrossRefGoogle Scholar
  9. 9.
    Poompradub S, Thirakulrati M, Prasassarakich P (2014) In situ generated silica in natural rubber latex via the sol-gel technique and properties of the silica rubber composites. Mater Chem Phys 144:122–131CrossRefGoogle Scholar
  10. 10.
    Prasertsri S, Rattanasom N (2012) Fumed and precipitated silica reinforced natural rubber composites prepared from latex system: mechanical and dynamic properties. Polym Test 31:593–605CrossRefGoogle Scholar
  11. 11.
    Arroyo M, López-Manchado M, Herrero B (2003) Organo-montmorillonite as substitute of carbon black in natural rubber compounds. Polymer 44:2447–2453CrossRefGoogle Scholar
  12. 12.
    Rajisha K, Maria H, Pothan L, Ahmad Z, Thomas S (2014) Preparation and characterization of potato starch nanocrystal reinforced natural rubber nanocomposites. Int J Biol Macromol 67:147–153CrossRefGoogle Scholar
  13. 13.
    Cao X, Xu C, Wang Y, Liu Y, Liu Y, Chen Y (2013) New nanocomposite materials reinforced with cellulose nanocrystals in nitrile rubber. Polym Test 32:819–826CrossRefGoogle Scholar
  14. 14.
    Nair K, Dufresne A (2003) Crab shell chitin whisker reinforced natural rubber nanocomposites. 2. Mechanical behavior. Biomacromolecules 4:666–674CrossRefGoogle Scholar
  15. 15.
    Yorsaeng S, Pornsunthorntawee O, Rujiravanit R (2012) Preparation and characterization of chitosan-coated DBD plasma-treated natural rubber latex medical surgical gloves with antibacterial activities. Plasma Chem Plasma 32:1275–1292CrossRefGoogle Scholar
  16. 16.
    Zeng Z, Ren W, Xu C, Lu W (2010) Maleated natural rubber prepared through mechanochemistry and its coupling effects on natural rubber/cotton fiber composites. J Polym Res 17:213–219CrossRefGoogle Scholar
  17. 17.
    Zhou Z, Chu L, Hu S (2006) Microwave absorption behaviors of tetra needle like ZnO whiskers. Mater Sci Eng B 126:93–96CrossRefGoogle Scholar
  18. 18.
    Guo Z, Xiong J, Yang M, Li W (2008) Microstructure and properties of tetrapod-like ZnO whiskers reinforced al matrix composite. J Alloys Compd 461:342–345CrossRefGoogle Scholar
  19. 19.
    Fan X, Zhang H, Wang J, Zhou Z (2010) Influence of annealing temperature on field emission from tetrapod-shaped ZnO-whisker films obtained by screen printing. Mater Sci Semicond Process 13:400–404CrossRefGoogle Scholar
  20. 20.
    Fan X, Zhao L, Zhou Z, Zhang G, Wang J (2010) Impact of al doping on microstructure and optical characteristics of tetrapod-like zinc oxide whiskers. Phys B 405:2538–2541CrossRefGoogle Scholar
  21. 21.
    Rathnayake W, Ismail H, Baharin A, Bandara I, Rajapakse S (2014) Enhancement of the antibacterial activity of natural rubber latex foam by the incorporation of zinc oxide nanoparticles. J Appl Polym Sci 131:1–15Google Scholar
  22. 22.
    Pan X, Peng L, Liu Y, Wang J (2014) Highly antibacterial and toughened polystyrene composites with silver nanoparticles modified tetrapod-like zinc oxide whiskers. J Appl Polym Sci 131:1366–1373Google Scholar
  23. 23.
    Han Y, Li L, Chen X, Zhang S, Wang Y, Wei X (2009) Surface modification of basic magnesium sulfate whiskers. Adv Mater Res 58:191–198CrossRefGoogle Scholar
  24. 24.
    Demjén Z, Pukánszky B, Nagy J (1998) Evaluation of interfacial interaction in polypropylene/surface treated CaCO3 composites. Composites Part A 29:323–329CrossRefGoogle Scholar
  25. 25.
    Tan F, Qiao X, Chen J, Wang H (2006) Effects of coupling agents on the properties of epoxy-based electrically conductive adhesives. Int J Adhes Adhes 26:406–413CrossRefGoogle Scholar
  26. 26.
    Dang L, Nai X, Zhu D, Jing Y, Liu X, Dong Y, Li W (2014) Study on the mechanism of surface modification of magnesium oxysulfate whisker. Appl Surf Sci 317:325–331CrossRefGoogle Scholar
  27. 27.
    Fang Z, Feng Q (2014) Improved mechanical properties of hydroxyapatite whisker-reinforced poly( L-lactic acid) scaffold by surface modification of hydroxyapatite. Mater Sci Eng C 35:190–194CrossRefGoogle Scholar
  28. 28.
    Hong T, Lv Z, Liu X, Li W, Nai Y, Dong Y (2016) A novel surface modification method for anhydrite whisker. Mater Des 107:117–122CrossRefGoogle Scholar
  29. 29.
    Liu C, Zhao Q, Wang Y, Shi P, Jiang M (2015) Surface modification of calcium sulfate whisker prepared from flue gas desulfurization gypsum. Appl Surf Sci 360:263–269CrossRefGoogle Scholar
  30. 30.
    Fuad M, Ismail Z, Ishak Z, Omar A (1995) Application of rice husk ash as fillers in polypropylene: effect of titanate, zirconate and silane coupling agents. Eur Polym J 31:885–893CrossRefGoogle Scholar
  31. 31.
    Valentín J, Carreterogonzález J, Morabarrantes I, Chassé W, Saalwächter K (2008) Uncertainties in the determination of cross-link density by equilibrium swelling experiments in natural rubber. Macromolecules 41:4717–4729CrossRefGoogle Scholar
  32. 32.
    Saleesung T, Reichert D, Saalwächter K, Sirisinha C (2014) Correlation of crosslink densities using solid state NMR and conventional techniques in peroxide-crosslinked EPDM rubber. Polymer 56:309–317CrossRefGoogle Scholar
  33. 33.
    Guo Y, Wang L, Zhang A (2006) Mechanical properties and crosslink density of rare earth-modified high-abrasion furnace-filled powdered natural rubber. J Appl Polym Sci 102:1755–1762CrossRefGoogle Scholar
  34. 34.
    Thongnuanchan B, Ninjan R, Kaesaman A, Nakason C (2015) Studies on the ambient temperature crosslinking of latex films based on natural rubber grafted with poly(diacetone acrylamide) using DMTA. J Polym Res 22:1–11CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Material scienceLongyan UniversityLongyanChina
  2. 2.College of Material and Chemistry EngineeringHainan UniversityHaikouChina

Personalised recommendations