Journal of Polymer Research

, 25:34 | Cite as

Facile synthesis of bio-sourced polyurethane- fluorosilane modified TiO2 hybrid coatings for high-performance self cleaning application

  • S. Anthony Yesudass
  • Smita Mohanty
  • Sanjay K Nayak


In this study, modified Titanium nanoparticles (nTiO2) with 1H,1H,2H,2H–Perfluorooctyltrimethoxysilane(FS). Water contact angle reports the abrupt changes in the water contact angle from unmodified TiO2 to modified TiO2 (8.9 to 153o). Further this was incorporated in to the polyurethane matrix to improve the in situ dispersion of polyurethane–FS-nTiO2 hybrid in a solution containing the castor oil, triethanolamine and isophornediisocyanate (IPDI) prepolymer. The resulting synthesis approach produced a uniformly dispersed TiO2 nanoparticles-polyurethane hybrid. This was confirmed by WAXD and AFM results. The degree of hydrophobicity was increased from 68 to 132°. Mechanical test revealed improved tensile strength of polyurethane with the incorporation of FS-nTiO2 from 4.2 MPa to 8.2 MPa and showed the best self-cleaning properties.


Modified TiO2 Castor oil Polyurethane High performance Self-cleaning 



The authors would like to gratefully acknowledge DST-TSD, New Delhi, Government of India for the financial support.


  1. 1.
    Hejazi I, Hajalizadeh B, Seyfi J, Sadeghi GMM, Jafari SH, Khonakdar HA (2014) Role of nanoparticles in phase separation and final morphology of superhydrophobic polypropylene/zinc oxide nanocomposite surfaces. Appl Surf Sci 293:116–123CrossRefGoogle Scholar
  2. 2.
    Weng CJ, Chang CH, Lin IL, Yeh JM, Wei Y, Hsu CL, Chen PH (2012) Advanced anticorrosion coating materials prepared from fluoro-polyaniline-silica composites with synergistic effect of superhydrophobicity and redox catalytic capability. Surf Coat Technol 207:42–49CrossRefGoogle Scholar
  3. 3.
    Weng CJ, Peng CW, Chang CH, Chang YH, Yeh JM (2012) Corrosion resistance conferred by superhydrophobic fluorinated polyacrylate–silica composite coatings on cold-rolled steel. J Appl Polym Sci 126:E48–E55CrossRefGoogle Scholar
  4. 4.
    An Q, Xu W, Hao L, Fu Y, Huang L (2013) Fabrication of superhydrophobic fabric coating using microphase-separated dodecafluoroheptyl-containing polyacrylate and nanosilica. J Appl Polym Sci 128(5):3050–3056CrossRefGoogle Scholar
  5. 5.
    Khakbaz M, Hejazi I, Seyfi J, Jafari SH, Khonakdar HA, Davachi SM (2015) A novel method to control hydrolytic degradation of nanocomposite biocompatible materials via imparting superhydrophobicity. Appl Surf Sci 357:880–886CrossRefGoogle Scholar
  6. 6.
    Shirtcliffe NJ, McHale G, Newton MI, Perry CC (2003) Intrinsically superhydrophobic organosilica sol− gel foams. Langmuir 19(14):5626–5631CrossRefGoogle Scholar
  7. 7.
    Hejazi I, Sadeghi GMM, Seyfi J, Jafari SH, Khonakdar HA (2016) Self-cleaning behavior in polyurethane/silica coatings via formation of a hierarchical packed morphology of nanoparticles. Appl Surf Sci 368:216–223CrossRefGoogle Scholar
  8. 8.
    Tjong SC (2006) Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R Rep 53(3):73–197CrossRefGoogle Scholar
  9. 9.
    Chen L, Shen H, Lu Z, Feng C, Chen S, Wang Y (2007) Fabrication and characterization of TiO2–SiO2 composite nanoparticles and polyurethane/(TiO2–SiO2) nanocomposite films. Colloid Polym Sci 285(13):1515CrossRefGoogle Scholar
  10. 10.
    Polizos G, Tuncer E, Agapov AL, Stevens D, Sokolov AP, Kidder MK, Sauers I (2012) Effect of polymer–nanoparticle interactions on the glass transition dynamics and the conductivity mechanism in polyurethane titanium dioxide nanocomposites. Polymer 53(2):595–603CrossRefGoogle Scholar
  11. 11.
    Charpentier PA, Burgess K, Wang L, Chowdhury RR, Lotus AF, Moula G (2012) Nano-TiO2/polyurethane composites for antibacterial and self-cleaning coatings. Nanotechnology 23(42):425606CrossRefGoogle Scholar
  12. 12.
    Chen Y, Yan L, Yuan T, Zhang Q, Fan H (2011) Asymmetric polyurethane membrane with in situ-generated nano-TiO2 as wound dressing. J Appl Polym Sci 119(3):1532–1541CrossRefGoogle Scholar
  13. 13.
    Li YQ, Fu SY, Yang Y, Mai YW (2008) Facile synthesis of highly transparent polymer nanocomposites by introduction of core–shell structured nanoparticles. Chem Mater 20(8):2637–2643CrossRefGoogle Scholar
  14. 14.
    Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204CrossRefGoogle Scholar
  15. 15.
    Palkovits R, Althues H, Rumplecker A, Tesche B, Dreier A, Holle U, Kaskel S (2005) Polymerization of w/o microemulsions for the preparation of transparent SiO2/PMMA nanocomposites. Langmuir 21(13):6048–6053CrossRefGoogle Scholar
  16. 16.
    Guo Z, Pereira T, Choi O, Wang Y, Hahn HT (2006) Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties. J Mater Chem 16(27):2800–2808CrossRefGoogle Scholar
  17. 17.
    Caseri WR (2006) Nanocomposites of polymers and inorganic particles: preparation, structure and properties. J Mater Sci Technol 22(7):807–817CrossRefGoogle Scholar
  18. 18.
    Wu HC, Kuo YC, Wang YH, Wu CW, Hsiao HC (2010) Study on safe air transporting velocity of nanograde aluminum, iron, and titanium. J Loss Prev Process Ind 23(2):308–311CrossRefGoogle Scholar
  19. 19.
    Kim D, Jeon K, Lee Y, Seo J, Seo K, Han H, Khan S (2012) Preparation and characterization of UV-cured polyurethane acrylate/ZnO nanocomposite films based on surface modified ZnO. Prog Org Coat 74(3):435–442CrossRefGoogle Scholar
  20. 20.
    Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog Polym Sci 38(8):1232–1261CrossRefGoogle Scholar
  21. 21.
    Daoud WA, Xin JH, Tao X (2004) Superhydrophobic silica nanocomposite coating by a low-temperature process. J Am Ceram Soc 87(9):1782–1784CrossRefGoogle Scholar
  22. 22.
    Liu H, Feng L, Zhai J, Jiang L, Zhu D (2004) Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity. Langmuir 20(14):5659–5661CrossRefGoogle Scholar
  23. 23.
    Zhang X, Shi F, Niu J, Jiang Y, Wang Z (2008) Superhydrophobic surfaces: from structural control to functional application. J Mater Chem 18(6):621–633CrossRefGoogle Scholar
  24. 24.
    Montemor MF (2014) Functional and smart coatings for corrosion protection: a review of recent advances. Surf Coat Technol 258:17–37CrossRefGoogle Scholar
  25. 25.
    Artus GR, Seeger S (2012) Scale-up of a reaction chamber for superhydrophobic coatings based on silicone nanofilaments. Ind Eng Chem Res 51(6):2631–2636CrossRefGoogle Scholar
  26. 26.
    Lopez-Torres D, Elosua C, Hernaez M, Goicoechea J, Arregui FJ (2015) From superhydrophilic to superhydrophobic surfaces by means of polymeric layer-by-layer films. Appl Surf Sci 351:1081–1086CrossRefGoogle Scholar
  27. 27.
    Conceicao MM, Candeia RA, Silva FC, Bezerra AF, Fernandes VJ, Souza AG (2007) Thermoanalytical characterization of castor oil biodiesel. Renew Sustain Energy Rev 11(5):964–975CrossRefGoogle Scholar
  28. 28.
    Karak N, Rana S, Cho JW (2009) Synthesis and characterization of castor-oil-modified hyperbranched polyurethanes. J Appl Polym Sci 112(2):736–743CrossRefGoogle Scholar
  29. 29.
    Kong X, Liu G, Qi H, Curtis JM (2013) Preparation and characterization of high-solid polyurethane coating systems based on vegetable oil derived polyols. Prog Org Coat 76(9):1151–1160CrossRefGoogle Scholar
  30. 30.
    Pilla S, Gaddam RR, Narayan R, Rao CR, Raju KVSN (2015) Biosourced graphitic nanoparticle loaded hyperbranched polyurethane composites–application as multifunctional high-performance coatings. New J Chem 39(9):7219–7226CrossRefGoogle Scholar
  31. 31.
    Xia Y, Larock RC (2011) Preparation and properties of aqueous castor oil-based polyurethane–silica nanocomposite dispersions through a sol–gel process. Macromol Rapid Commun 32(17):1331–1337CrossRefGoogle Scholar
  32. 32.
    Meera KMS, Sankar RM, Paul J, Jaisankar SN, Mandal AB (2014) The influence of applied silica nanoparticles on a bio-renewable castor oil based polyurethane nanocomposite and its physicochemical properties. Phys Chem Chem Phys 16(20):9276–9288CrossRefGoogle Scholar
  33. 33.
    Thakur S, Barua S, Karak N (2015) Self-healable castor oil based tough smart hyperbranched polyurethane nanocomposite with antimicrobial attributes. RSC Adv 5(3):2167–2176CrossRefGoogle Scholar
  34. 34.
    Gurunathan T, Mohanty S, Nayak SK (2015) Effect of reactive organoclay on physicochemical properties of vegetable oil-based waterborne polyurethane nanocomposites. RSC Adv 5(15):11524–11533CrossRefGoogle Scholar
  35. 35.
    Hou X, He J, Yu L, Li Z, Zhang Z, Zhang P (2014) Preparation and tribological properties of fluorosilane surface-modified lanthanum trifluoride nanoparticles as additive of fluoro silicone oil. Appl Surf Sci 316:515–523CrossRefGoogle Scholar
  36. 36.
    Sadeghi M, Afarani HT, Tarashi Z (2015) Preparation and investigation of the gas separation properties of polyurethane-TiO2 nanocomposite membranes. Korean J Chem Eng 32(1):97–103CrossRefGoogle Scholar
  37. 37.
    Mirabedini A, Mirabedini SM, Babalou AA, Pazokifard S (2011) Synthesis, characterization and enhanced photocatalytic activity of TiO 2/SiO 2 nanocomposite in an aqueous solution and acrylic-based coatings. Prog Org Coat 72(3):453–460CrossRefGoogle Scholar
  38. 38.
    Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO (2008) Tough, bio-inspired hybrid materials. Science 322(5907):1516–1520CrossRefGoogle Scholar
  39. 39.
    Lligadas G, Ronda JC, Galià M, Cádiz V (2006) Bionanocomposites from renewable resources: epoxidized linseed oil− polyhedral oligomeric silsesquioxanes hybrid materials. Biomacromolecules 7(12):3521–3526CrossRefGoogle Scholar
  40. 40.
    Florian P, Jena KK, Allauddin S, Narayan R, Raju KVSN (2010) Preparation and characterization of waterborne hyperbranched polyurethane-urea and their hybrid coatings. Ind Eng Chem Res 49(10):4517–4527CrossRefGoogle Scholar
  41. 41.
    Yao KJ, Song M, Hourston DJ, Luo DZ (2002) Polymer/layered clay nanocomposites: 2 polyurethane nanocomposites. Polymer 43(3):1017–1020CrossRefGoogle Scholar
  42. 42.
    Saleema N, Sarkar DK, Gallant D, Paynter RW, Chen XG (2011) Chemical nature of superhydrophobic aluminum alloy surfaces produced via a one-step process using fluoroalkyl-silane in a base medium. ACS Appl Mater Interfaces 3(12):4775–4781CrossRefGoogle Scholar
  43. 43.
    Wang H, Zhang X, Liu Z, Zhu Y, Wu S, Zhu Y (2016) A superrobust superhydrophobic PSU composite coating with self-cleaning properties, wear resistance and corrosion resistance. RSC Adv 6(13):10930–10937CrossRefGoogle Scholar
  44. 44.
    Lu Y, Sathasivam S, Song J, Crick CR, Carmalt CJ, Parkin IP (2015) Robust self-cleaning surfaces that function when exposed to either air or oil. Science 347(6226):1132–1135CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • S. Anthony Yesudass
    • 1
  • Smita Mohanty
    • 1
  • Sanjay K Nayak
    • 1
  1. 1.Laboratory for Advanced Research in Polymeric Materials (LARPM)Central Institute of Plastics Engineering &Technology, B-25, CNI ComplexBhubaneswarIndia

Personalised recommendations