Phenazine-containing poly(phenylenevinylene): a new polymer with impressive field emission properties

  • Shraddha ChhatreEmail author
  • Amol Ichake
  • Kashmira Harpale
  • Sumati Patil
  • Aparna Deshpande
  • Mahendra MoreEmail author
  • Prakash P. WadgaonkarEmail author


Phenazine-containing poly(phenylenevinylene) (P(PHN-PV)) was synthesized using Wittig-Horner polycondensation of the appropriately designed monomers viz. 5,10-dioctyl-5,10-dihydrophenazine-2,7-dicarbaldehyde and tetraethyl ((2,5-bis((2-ethylhexyl) oxy)-1,4 phenylene) bis(methylene)) bis(phosphonate). The design embraces the specific motivation of incorporating the nitrogen-containing heterocycle viz. .phenazine in poly(phenylenevinylene) backbone. P(PHN-PV) exhibited reversible redox properties. In the field emission measurements performed on the film of P(PHN-PV), the turn-on field was observed to be 1.93 V/μm for the current density of 10 μA/cm2. The maximum current density of ~4.87 mA/cm2 was achieved at the applied field of 3.84 V/μm. The emission current showed impressive stability for 6 h at a constant current of 1 μA (current density of about 20 μA/cm2). These results emphasize the role of phenazine heterocycle with lone pair of electrons on nitrogen in lowering the oxidation onset and in turn reduction of the turn-on voltage.


Poly(phenylenevinylene) Phenazine Field emission 



The authors would like to thank Dr. Satishchandra B. Ogale (Centre of Excellence in Solar Energy, Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune, India) for valuable support. The authors also thank Dr. Dipti Dhakaras for conductivity measurements, Dr. Meenal Deo for help with Mott Schottky measurements, Mukta Tathavadekar for spray coating and Dr. Manoj Mane for DFT calculations. Shraddha Chhatre gratefully acknowledges the CSIR India, for the fellowship.

Supplementary material

10965_2017_1428_MOESM1_ESM.doc (6.1 mb)
ESM 1 (DOC 6250 kb)


  1. 1.
    Lin Z, Wang J (eds) (2014) Low-cost nanomaterials: Toward greener and more efficient energy applications. Springer - Verlag London, VI, 488.
  2. 2.
    Torres T, Bottari G (eds) (2013) Organic nanomaterials: synthesis, characterization, and device applications. John Wiley & Sons, Inc., HobokenGoogle Scholar
  3. 3.
    Burchell TD (1999) Carbon materials for advanced technologies. Elsevier Science, Oak Ridge, p 540Google Scholar
  4. 4.
    Jia C, Ma B, Xin N, Guo X (2015). Acc Chem Res 48:2565–2575CrossRefGoogle Scholar
  5. 5.
    Pan J, Sheng Y, Zhang J, Huang P, Zhang X, Feng B (2015). ACS Appl Mater Interfaces 7:7878–7883CrossRefGoogle Scholar
  6. 6.
    Yang C, Wei H, Guan L, Guo J, Wang Y, Yan X, Zhang X, Wei S, Guo Z (2015). J Mater Chem A 3:14929CrossRefGoogle Scholar
  7. 7.
    Patil SS, Jha P, Aswal DK, Gupta SK, Yakhmi JV, Joag DS, More MA (2012). Polym Adv Technol 23:215–219CrossRefGoogle Scholar
  8. 8.
    Wang C, Wang Z, Li M, Li H (2001). Chem Phys Lett 341:431–434CrossRefGoogle Scholar
  9. 9.
    Patil SS, Harpale KV, Koiry SP, Patil KR, Aswal DK, More MA (2015). J Appl Polym Sci 132:5CrossRefGoogle Scholar
  10. 10.
    Sameera I, Bhatia R, Ouyang J, Prasad V, Menon R (2013). Appl Phys Lett 102:033102CrossRefGoogle Scholar
  11. 11.
    Ding H, Feng T, Chen Y, Sun Z (2012). Appl Surf Sci 25:5191–5194CrossRefGoogle Scholar
  12. 12.
    Yan H, Zhang L, Shen J, Chen Z, Shi G, Zhang B (2006). Nanotechnology 17:3446–3450CrossRefGoogle Scholar
  13. 13.
    Patil SS, Koiry SP, Veerender P, Aswal DK, Gupta SK, Joag DS, More MA (2012). RSC Adv Technol 2:5822–5827CrossRefGoogle Scholar
  14. 14.
    Kim BH, Park DH, Joo J, Yu SG, Lee SH (2005). Synth Met 150:279–284CrossRefGoogle Scholar
  15. 15.
    Musa I, Munindrasdasa DAI, Amaratunga GAJ, Eccleston W (1998). Nature 395:362CrossRefGoogle Scholar
  16. 16.
    Sridhar S, Tiwary C, Vinod S, Taha-Tijerina JJ, Sridhar S, Kalaga K, Sirota B, Hart AHC, Ozden S, Sinha RK, Harsh VR, Choi W, Kordás K, Ajayan PM (2014). ACS Nano 8:7763–7770CrossRefGoogle Scholar
  17. 17.
    Kim BH, Kim MS, Park KT, Lee JK, Park DH, Joo J, Yu SG, Lee SH (2003). Appl Phys Lett 83:539CrossRefGoogle Scholar
  18. 18.
    Rujia Z, Zhang Z, Jiang L, Xu K, Tian Q, Xue S, Hu J, Bandob Y, Golberg D (2012). J Mater Chem 22:19196CrossRefGoogle Scholar
  19. 19.
    Chen N, Qian X, Lin H, Liua H, Li Y (2012). J Mater Chem 22:11068CrossRefGoogle Scholar
  20. 20.
    Viskadouros GM, Stylianakis MM, Kymakis E, Stratakis E (2014). ACS Appl Mater Interfaces 6:388–393CrossRefGoogle Scholar
  21. 21.
    Alexandrou I, Kymakis E, Amaratunga GAJ (2002). Appl Phys Lett 80:1435CrossRefGoogle Scholar
  22. 22.
    Jin YW, Jung JE, Park YJ, Choi JH, Jung DS, Lee HW, Park SH, Lee NS, Kim JM, Ko TY, Lee SJ, Hwang SY, You JH, Yoo JB, Park CY (2002). J Appl Phys 92:1065CrossRefGoogle Scholar
  23. 23.
    Okano K, Koizumi S, Silva SP, Amaratunga GAJ (1996). Nature 381:140–141CrossRefGoogle Scholar
  24. 24.
    Amaratunga GAJ, Silva SRP (1996). Appl Phys Lett 68:2529–2531CrossRefGoogle Scholar
  25. 25.
    Bagher AM (2014). Sustainable Energy 2:85–90CrossRefGoogle Scholar
  26. 26.
    Mihailetchi VD, Koster LJA, Blom PWM, Melzer C, de Boer B, van Duren JKJ, Janssen RAJ (2005). Adv Funct Mater 15:795–801CrossRefGoogle Scholar
  27. 27.
    Suppiah S, Mohamad SM, Juhari N (2011) Fabrication of MEH-PPV based organic light emitting diode and transistor. IEEE Regional Symposium on Micro and Nanoelectronics (RSM), 28-30 Sept 2011. doi:
  28. 28.
    Lei T, Xia X, Wang JY, Liu CJ, Pei J (2014). J Am Chem Soc 136:2135–2141CrossRefGoogle Scholar
  29. 29.
    Lei T, Dou JH, Cao XY, Wang JY, Pei J (2013). J Am Chem Soc 135:12168–12171CrossRefGoogle Scholar
  30. 30.
    Todescato F, Capelli R, Dinelli F, Murgia M, Camaioni N, Yang M, Bozio R, Muccini M (2008). J Phys Chem B 112:10130–10136CrossRefGoogle Scholar
  31. 31.
    Hiraoka S, Okamoto T, Kozaki M, Shiomi D, Sato K, Takui T, Okada K (2004). J Am Chem Soc 126:58–59CrossRefGoogle Scholar
  32. 32.
    Terada E, Okamoto T, Kozaki M, Masaki ME, Shiomi D, Sato K, Takui T, Okada K (2005). J Organomet Chem 70:10073–10081CrossRefGoogle Scholar
  33. 33.
    Thalladi VR, Smolka T, Gehrke A, Boese R, Sustmann R (2000). New J Chem 24:143–147CrossRefGoogle Scholar
  34. 34.
    Price-Whelan A, Dietrich LEP, Newman DK (2006). Nat Chem Biol 2:71–78CrossRefGoogle Scholar
  35. 35.
    Pierson IIILS, Pierson EA (2010). Appl Microbiol Biotechnol 86:1659–1670CrossRefGoogle Scholar
  36. 36.
    Zheng Z, Dong Q, Gou L, Su JH, Huang J (2014). J Mater Chem C 2:9858–9865CrossRefGoogle Scholar
  37. 37.
    Gu PY, Zhao Y, He JH, Zhang J, Wang C, Xu QF, Lu JM, Sun XW, Zhang QJ (2015). Org Chem 80:3030–3035CrossRefGoogle Scholar
  38. 38.
    Lee J, Shizu K, Tanaka H, Nakanotani H, Yasuda T, Kaji H, Adachi C (2015). J Mater Chem C 3:2175–2181CrossRefGoogle Scholar
  39. 39.
    Song HJ, Goh M, Choi KH, Lee S, Moon DK, Shin GJ (2015). J IndEng Chem 23:338–343Google Scholar
  40. 40.
    Lee DC, Brownell LV, Yan L, You W (2014). ACS Appl Mater Interfaces 6:15767–15773CrossRefGoogle Scholar
  41. 41.
    Li G, Lu Z, Li C, Bo Z (2015). Polym Chem 6:1613–1618CrossRefGoogle Scholar
  42. 42.
    Lu X, Lan T, Qin Z, Wang ZS, Zhou G (2014). ACS Appl Mater Interfaces 6:19308–19317CrossRefGoogle Scholar
  43. 43.
    Richard CA, Pan Z, Hsu HY, Cekli S, Schanze KS, Reynolds JR (2014). ACS Appl Mater Interfaces 6:5221–5227CrossRefGoogle Scholar
  44. 44.
    Yang L, Li X, Yang J, Qu Y, Hua J (2013). ACS Appl Mater Interfaces 5:1317–1326CrossRefGoogle Scholar
  45. 45.
    Wang B, Wasielewski MR (1997). J Am Chem Soc 119:12–21CrossRefGoogle Scholar
  46. 46.
    Liu B, Yu WL, Pei J, Liu SY, Lai YH, Huang W (2001). Macromolecules 34:7932–7940CrossRefGoogle Scholar
  47. 47.
    Iwasa Y, Koda T, Koshihara S, Tokura Y, Iwasawa N, Saito G (1989). Phys Rev B: Condens Matter Mater Phys 39:10441–10444CrossRefGoogle Scholar
  48. 48.
    Okamoto T, Terada E, Kozaki M, Uchida M, Kikukawa S, Okada K (2003). Org Lett 5:373–376CrossRefGoogle Scholar
  49. 49.
    Koike R, Katayose Y, Ohta A, Motoyoshiya J, Nishii Y, Aoyam H (2005). Tetrahedron 61:11020–11026CrossRefGoogle Scholar
  50. 50.
    Narasimha K, Jayakannan M (2014). Appl Mater Interfaces 6:19385–19396CrossRefGoogle Scholar
  51. 51.
    Fowler RH, Nordheim L (1928). R Soc Lond A 119:173CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Polymer Science and Engineering DivisionCSIR-National Chemical Laboratory (CSIR-NCL)PuneIndia
  2. 2.Department of PhysicsSavitribai Phule Pune UniversityPuneIndia
  3. 3.Department of Physics and Centre for Energy ScienceIndian Institute of Science Education and Research (IISER)PuneIndia

Personalised recommendations