Advertisement

Journal of Polymer Research

, 25:26 | Cite as

Influence of Pb+2-Thiourea complex concentration on the structural, optical, thermal and electrical properties of PbS/PVP-PVA nanocomposite films

  • Mitesh H. Patel
  • Tapas K. Chaudhuri
  • T. Shripathi
  • U. Deshpande
  • Vaibhav K. Patel
ORIGINAL PAPER

Abstract

Deposition of nanocomposite films of lead sulphide (PbS) nanoparticles in blend (1:1) of polyvinyl pyrrolidone (PVP) and Polyvinyl alcohol (PVA) by dip-coating from a precursor aqua-methanolic solution containing of Pb+2-TU complex (LTUC) is reported. To obtain nanocomposite films, solid precursor films are heated at about 110 °C in air for 10 mins to convert the LTUC in to PbS nanoparticles in PVP-PVA by in-situ thermolysis. PbS/PVP-PVA films with different loading of PbS was prepared by varying the concentration of LTUC in precursor solutions. The effect of LTUC on the microstructural, optical, thermal and electrical properties of the films was investigated. The X-ray diffraction of films confirms the presence of PbS nanoparticles in PVP-PVA matrix. The band gaps of PbS/PVP-PVA films varied from 1.8 to 0.8 eV as the concentration of LTUC varied from 0.0125 to 0.1 M due to formation of PbS nanoparticles. Transmission electron microscopy (TEM) shows that PbS nanoparticles are spherical with maximum diameter of 18 to 22 nm. The Fourier transformed infrared (FTIR) spectroscopy and X-Ray photoelectron spectroscopy (XPS) indicate the formation of hydrogen bond between –O–H group of PVA and –C = O group of PVP. However, PbS nanoparticles does not interact with either of the polymers. Thermogravimetric analysis (TGA) reveals that there was an improvement in thermal stability of PbS/PVP-PVA nanocomposites as compared to PVP-PVA blend. The dc conductivities of PVP-PVA and PbS/PVP-PVA(0.1 M) NC were found to be 3.2 × 10−6 S cm−1 and 14.2 × 10−6 S cm−1, respectively.

Keywords

Polymer blend Nanocomposites PbS nanoparticles Band gap 

Notes

Acknowledgements

Authors are thankful to the UGC-DAE Consortium for Scientific Research, Indore for grant under Collaborative Research Scheme (CSR-IC/CRS-92/2014-15/598). The help rendered by the Facilitation Centre for Industrial Plasma Technologies (FCIPT), Gandhinagar in SEM is appreciated.

References

  1. 1.
    UtrackiL A (1990) Polymer alloys and blends. Carl Hanser, Munich, FRGoogle Scholar
  2. 2.
    Watt A, Blake D, Warner J, Thomesen E, Tanvenner E, Rubinsztein-Dunlop MH (2005) A new approach to the synthesis of nanocrystals conjugated polymer composites. J Phys D 38:2006–2012Google Scholar
  3. 3.
    Seo J, Kim S, Kim W. Samoc Singh J R, Cartwright A, Prasad P (2009) Enhancement of the photovoltaic performance in PbS nanocrystals: P3HT hybrid composite devices by post-treatment-driven ligand exchange. Nanotechnology 20:095202–095208Google Scholar
  4. 4.
    Wang Z, Qu S, Zeng X, Liu ZJC, Shi M, Tan F, Wang Z (2009) The synthesis of MDMO-PPV capped PbS nanorods and their application in solar cells. Curr Appl Phys 9:1175–1179CrossRefGoogle Scholar
  5. 5.
    Devi P, Ramachandran K (2010) Hybridized PVDF/PbS nanocomposites for solar cell applications. AIP Conf Proc 1276:183–188CrossRefGoogle Scholar
  6. 6.
    Guchhait A, Rath A, and Pal (2011) To make polymer quantum dot hybrid solar cells NIR-active by increasing diameter of PbS nanoparticles. J Sol Energy Mater Sol Cells 95:651–656Google Scholar
  7. 7.
    Zhou M, Wang B, Jiang X, Zakhidov A, Ferraris J, Azunskis P, Hanley D (2011) Synthesis of PbS nano crystal functionalized conducting polymers for plastic solar cells. Int J Nanosci 10:521–532CrossRefGoogle Scholar
  8. 8.
    Liu B, Li H, Chew C, Que W, Lam Y, Kam C, Gan L, Xu G (2001) PbS-polymer nanocomposites with third-order nonlinear optical response in femtosecond regime. Mater Lett 51:461–469CrossRefGoogle Scholar
  9. 9.
    Lyakhovetsky V, Volkov V, Borshch A, Brodyn M, Strashnikova M, Reznichenko V (2005) New optical nonlinear material based upon PVA with PbS quantum dots. Mol Cryst Liq Cryst 426:205–217CrossRefGoogle Scholar
  10. 10.
    Kurian P, Vijayan C, Sandeep S (2007) Two-photon-assisted excited state absorption in nanocomposites films of PbS stabilized in synthetic glue matrix. Nanotechnology 18:075708–075715CrossRefGoogle Scholar
  11. 11.
    Lu C, Guan C, Cheng Y, Yang Y (2005) PbS/polymer nanocomposites optical materials with high refractive index. Chem Matter 17:2448–2454CrossRefGoogle Scholar
  12. 12.
    Mcdonald S, Cyr P, levina l, Sargent E (2004) Photoconductivity from PbS-nano crystals/semiconducting polymer composites for solution-processible quantum-size tuneable infrared photoconductors. Appl Phys Lett 85:2089–2091Google Scholar
  13. 13.
    Sarma S, Datta P (2012) Un doped and doped poly vinyl alcohol/lead Sulphide quantum dots as photoconductor. Nanosci Nanotechnol Lett 4:86–89CrossRefGoogle Scholar
  14. 14.
    Chaudhuri T. K, Kothari A, Tiwari D, Ray A (2013) Photoconducting nanocomposite films of PbS nanocrystals in insulating polystyrene. Phys Status Solidi A 2:356–360Google Scholar
  15. 15.
    Patel JD, Chaudhuri TK (2009) Synthesis of PbS/Polyvinylpyrrolidone nanocomposites. Mater Res Bull 44:1647–1651CrossRefGoogle Scholar
  16. 16.
    Sarma S, Datta P (2012) Undoped and doped poly vinyl alcohol/lead Sulphide quantum dots as photoconductor. Nanosci Nanotechnol Lett 4:86–89CrossRefGoogle Scholar
  17. 17.
    Patel MH, Chaudhuri TK, Patel VK, Shripathi T, Deshpande U (2016) Optical properties of PbS/PVP nanocomposites films. AIP Conf Proc 1728:020106–020109CrossRefGoogle Scholar
  18. 18.
    Patel MH, Chaudhuri TK, Patel VK, Shripathi T, Deshpande U, Lalla NP (2017) Dip-coated PbS/PVP nanocomposite films with tunable band gap. RSC Adv 7:4422–4429CrossRefGoogle Scholar
  19. 19.
    Chaudhuri TK, Patel MG (2010) High-refractive index nanocomposite films of polyvinylpyrolidone and CdS nanoparticles by in-situ thermolysis. AIP Conf Proc 1313:275–277CrossRefGoogle Scholar
  20. 20.
    Chaudhuri TK, Patel MG (2015) High refractive index films of ZnS/PVP nanocomposite by in situ thermolysis. J Exp Nanosci 10:135–147CrossRefGoogle Scholar
  21. 21.
    Khanna PK, Gokhale RR, Subbarao VVVS, Singh N, Jun K-W, Das BK (2005) Synthesis and optical properties of CdS/PVA nanocomposites. Mater Chem Phys 94:454–459CrossRefGoogle Scholar
  22. 22.
    Abdullah OG, Tahir DA, Kadir K (2015) Optical and structural investigation of synthesized PVA/PbS nanocomposites. J Mater Sci Mater Electron 26:6939–6944CrossRefGoogle Scholar
  23. 23.
    Patel MH, Chaudhuri TK, Patel VK, Shripathi T, Deshpande U (2016) Optical and spectroscopic investigation of tunable size PbS nanocrystals embedded in insulating PVA matrix. J Mater Sci Mater Electron 27:12627–12632CrossRefGoogle Scholar
  24. 24.
    Abdullah OG, Yahya AK, Salwan A (2016) Electrical conductivity and dielectric characteristics of in situ prepared PVA/HgS nanocomposite films. J Mater Sci Mater Electron 27:3591–3598CrossRefGoogle Scholar
  25. 25.
    Abdullah OG, Salwan A (2016) Effect of copper sulfide nanoparticles on the optical and electrical behavior of poly(vinyl alcohol) films. J Electron Mater 45:5910–5920CrossRefGoogle Scholar
  26. 26.
    Abdulwahid RT, Abdullah OG, Aziz SB, Hussein SA, Muhammad FF, Yahya MY (2016) The study of structural and optical properties of PVA: PbO2 based solid polymer nanocomposites. J Mater Sci Mater Electron 27:12112–12118CrossRefGoogle Scholar
  27. 27.
    Elashmawi IS, Abdelghany AM, Hakeem N (2013) A quantum confinement effect of CdS nanoparticles dispersed with in PVP/PVA nanocomposites. J Mater Sci Mater Electron 24:2956–2961CrossRefGoogle Scholar
  28. 28.
    Raj DR, Prasanth S, Vineeshkumar TV, Sudarsankumar C (2015) Ammonia sensing properties of tapered plastic optical fiber coated with silver nanoparticles/PVP/PVA hybrid. Opt Commun 340:86–92CrossRefGoogle Scholar
  29. 29.
    Eguiazdbal J, Calahorra E, Cortcfzar M, Guzman GM (1986) Miscibility of mixtures from partially hydrolyzed poly (viny1 acetate) and poly (N-vinyl-2-pyrrolidone). Makromol Chem 1817:2439–2444CrossRefGoogle Scholar
  30. 30.
    Ping Z, Nguyen Q, Neel J (1988) Investigations of poly (viny1 alcohol)/ poly (N-vinyl-2-pyrrolidone) blends. Makromol Chem 189:437–448CrossRefGoogle Scholar
  31. 31.
    Lia L, Chan C, Weng L (1998) The effects of specific interactions on the surface structure and composition of miscible blends of poly (vinyl alcohol) and poly (N-vinyl-2-pyrrolidone). Polymer 39:2355–2360CrossRefGoogle Scholar
  32. 32.
    Rajeswari N, Selvasekarapandian S, Karthikeyan S, Prabu M, Hirankumar G, Nithya H, Sanjeeviraja C (2011) Conductivity and dielectric properties of polyvinyl alcohol–polyvinyl pyrrolidone poly blend film using non-aqueous medium. J Non-Cryst Solids 357:3751–3756CrossRefGoogle Scholar
  33. 33.
    Kuljanin J, Vučković M, Čomor M, Bibić N, Djoković V, Nedeljković J (2002) Influence of CdS-filler on the thermal properties of polystyrene. Eur Polym J 38: 1659-1662Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Mitesh H. Patel
    • 1
    • 2
  • Tapas K. Chaudhuri
    • 1
  • T. Shripathi
    • 3
  • U. Deshpande
    • 3
  • Vaibhav K. Patel
    • 1
    • 2
  1. 1.Dr. K. C. Patel Research and Development CentreCharotar University of Science and Technology ChangaAnand DistrictIndia
  2. 2.P. D. Patel Institute of Applied SciencesCharotar University of Science and TechnologyChanga, Anand DistrictIndia
  3. 3.UGC-DAE Consortium for Scientific ResearchIndoreIndia

Personalised recommendations