Skip to main content
Log in

Effects of solvents on thermoelectric performance of PANi/PEDOT/PSS composite films

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Organic thermoelectric materials based on conducting polymers, especially for polyaniline (PANi) and poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), have attracted great concern due to their tunable electron transport properties by controlling doping level. Here, the solvent effects of deionized H2O and NH3·H2O were investigated on the electrical conductivity and Seebeck coefficient of PANi/PEDOT/PSS composite films. The introduction of PEDOT/PSS can not only effectively improve the quality of pure PANi film, but also enhance the electrical conductivity of PANi film. The different volumes of deionized H2O as dilution have a great influence on the electrical conductivity of PANi/PEDOT/PSS composite thin film with a maximum electrical conductivity value of 63.5 S cm−1, which is much higher than pure PANi and pristine PEDOT/PSS. The introduction of NH3·H2O shows a positive effect on Seebeck coefficient with a large decline on electrical conductivity of PANi/PEDOT/PSS. The Raman spectroscopy, scanning electron microscopy (SEM), and UV-vis spectroscopy were used to obtain the morphology and structure information of PANi/PEDOT/PSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114

    Article  CAS  Google Scholar 

  2. Zhang Q, Sun Y, Xu W, Zhu D (2014) Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently. Adv Mater 26:6829–6851

    Article  CAS  Google Scholar 

  3. Chen Y, Zhao Y, Liang Z (2015) Solution processed organic thermoelectrics: towards flexible thermoelectric modules. Energy Environ Sci 8:401–422

    Article  CAS  Google Scholar 

  4. He M, Qiu F, Lin Z (2013) Towards high-performance polymer-based thermoelectric materials. Energy Environ Sci 6:1352–1361

    Article  Google Scholar 

  5. Yue RR, Xu J (2012) Poly(3,4-ethylenedioxythiophene) as promising organic thermoelectric materials: a mini-review. Synth Met 162:912–917

    Article  CAS  Google Scholar 

  6. Jiang F, Xu J, Lu B, Xie Y, Huang R, Li L (2008) Thermoelectric performance of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate). Chin Phys Lett 25:2202–2205

    Article  CAS  Google Scholar 

  7. Lee K, Cho S, Park SH, Heeger AJ, Lee CW, Lee SH (2006) Metallic transport in polyaniline. Nature 441:65–68

    Article  CAS  Google Scholar 

  8. Ciric-Marjanovic G (2013) Recent advances in polyaniline research: polymerization mechanisms, structural aspects, properties and applications. Synth Met 177:1–47

    Article  CAS  Google Scholar 

  9. Zhang Q, Wang W, Li J, Zhu J, Wang L, Zhu M, Jiang W (2013) Preparation and thermoelectric properties of multi-walled carbon nanotube/polyaniline hybrid nanocomposites. J Mater Chem A 1:12109–12114

    Article  CAS  Google Scholar 

  10. Du Y, Shen SZ, Cai K, Casey PS (2012) Research progress on polymer–inorganic thermoelectric nanocomposite materials. Prog Polym Sci 37:820–841

    Article  CAS  Google Scholar 

  11. Yao Q, Chen L, Zhang W, Liufu S, Chen X (2010) Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. ACS Nano 4:2445–2451

    Article  CAS  Google Scholar 

  12. Wang L, Yao Q, Bi H, Huang F, Wang Q, Chen L (2015) PANI/graphene nanocomposite films with high thermoelectric properties by enhanced molecular ordering. J Mater Chem A 3:7086–7092

    Article  CAS  Google Scholar 

  13. Wang W, Zhang Q, Li J, Liu X, Wang L, Zhu J, Luo W, Jiang W (2014) An efficient thermoelectric material: preparation of reduced graphene oxide/polyaniline hybrid composites by cryogenic grinding. RSC Adv 5:8988–8995

    Article  Google Scholar 

  14. Chatterjee K, Mitra M, Kargupta K, Ganguly S, Banerjee D (2013) Synthesis, characterization and enhanced thermoelectric performance of structurally ordered cable-like novel polyaniline-bismuth telluride nanocomposite. Nanotechnology 24:215703

    Article  Google Scholar 

  15. Wang Q, Yao Q, Chang J, Chen L (2012) Enhanced thermoelectric properties of CNT/PANI composite nanofibers by highly orienting the arrangement of polymer chains. J Mater Chem A 22:17612–17618

    Article  CAS  Google Scholar 

  16. Liu J, Sun J, Gao L (2011) Flexible single-walled carbon nanotubes/polyaniline composite films and their enhanced thermoelectric properties. Nano 3:3616–3619

    CAS  Google Scholar 

  17. Abad B, Alda I, Díaz-Chao P, Kawakami H, Almarza A, Amantia D, Gutierrez D, Aubouyc L, Martín-González M (2013) Improved power factor of polyaniline nanocomposites with exfoliated graphene nanoplatelets (GNPs). J Mater Chem A 1:10450–10457

    Article  CAS  Google Scholar 

  18. Shi H, Liu C, Jiang Q, Xu J (2015) Effective approaches to improve the electrical conductivity of PEDOT:PSS: a review. Adv Electron Mater 1:1500017

    Article  Google Scholar 

  19. Xiong J, Jiang F, Zhou W, Liu C, Xu J (2015) Highly electrical and thermoelectric properties of PEDOT:PSS thin-film via direct dilution-filtration. RSC Adv 5:60708–60712

    Article  CAS  Google Scholar 

  20. Zhu Z, Liu C, Shi H, Jiang Q, Xu J, Jiang F, Xiong J, Liu E (2015) An effective approach to enhanced thermoelectric properties of PEDOT:PSS films by a DES post-treatment. J Polym Sci Pol Phys 53:885–892

    Article  CAS  Google Scholar 

  21. Jiang F, Xiong J, Zhou W, Liu C, Wang L, Zhao F, Liu H, Xu J (2016) Use of organic solvent-assisted exfoliated MoS2 for optimizing the thermoelectric performance of flexible PEDOT:PSS thin films. J Mater Chem A 4:5265–5273

    Article  CAS  Google Scholar 

  22. Xiong JH, Jiang FX, Shi H, Xu JK, Liu CC, Zhou WQ, Jiang QL, Zhu ZY, Hu YJ (2015) Liquid exfoliated graphene as dopant for improving thermoelectric power factor of conductive PEDOT:PSS nanofilm with hydrazine treatment. ACS Appl Mater Interfaces 5:14917–14925

    Article  Google Scholar 

  23. Jiang Q, Liu C, Xu J, Lu B, Song H, Shi H, Yao Y, Zhang L (2014) Paper: an effective substrate for the enhancement of thermoelectric properties in PEDOT:PSS. J Polym Sci Pol Phys 52:737–742

    Article  CAS  Google Scholar 

  24. Kim GH, Shao L, Zhang K, Pipe KP (2013) Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater 12:719–723

    Article  CAS  Google Scholar 

  25. Khan ZU, Bubnova O, Jafari MJ, Brooke R, Liu X, Gabrielsson R, Ederth T, Evans DR, Andreasen JW, Fahlman M, Crispin X (2015) Acido-basic control of the thermoelectric properties of poly(3,4-ethylenedioxythiophene)tosylate (PEDOT-Tos) thin films. J Mater Chem C 3:10616–10623

    Article  Google Scholar 

  26. Liu C, Jiang F, Huang M, Yue R, Lu B, Xu J, Liu G (2011) Thermoelectric performance of poly(3,4-ethylenedioxy-thiophene)/poly(styrenesulfonate) pellets and films. J Electron Mater 40:648–651

    Article  CAS  Google Scholar 

  27. Wang J, Cai K, Shen S (2015) A facile chemical reduction approach for effectively tuning thermoelectric properties of PEDOT films. Org Electron 17:151–158

    Article  CAS  Google Scholar 

  28. Lee SH, Park H, Son W, Choi HH, Kim JH (2014) Novel solution-processable, dedoped semiconductors for application in thermoelectric devices. J Mater Chem A 2:13380–13387

    Article  CAS  Google Scholar 

  29. Rahy A, Sakrout M, Manohar S, Cho SJ, Ferraris J, Yang DJ (2008) Polyaniline nanofiber synthesis by co-use of ammonium peroxydisulfate and sodium hypochlorite. Chem Mater 20:4808–4814

    Article  CAS  Google Scholar 

  30. Wang L, Jiang F, Xiong J, Xu J, Zhou W, Liu C, Shi H, Jiang Q (2015) Effects of second dopants on electrical conductivity and thermopower of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-filled carbon black. Mater Chem Phys 153:285–290

    Article  CAS  Google Scholar 

  31. Yan H, Kou K (2014) Enhanced thermoelectric properties in polyaniline composites with polyaniline-coated carbon nanotubes. J Mater Sci 49:1222–1228

    Article  CAS  Google Scholar 

  32. Tantawy HR, Weakley AT, Aston DE (2014) Chemical effects of a solvent-limited approach to HCl-doped polyaniline nanopowder synthesis. J Phys Chem C 118:1294–1305

    Article  CAS  Google Scholar 

  33. Dennany L, Innis PC, McGovern ST, Wallace GG, Forster RJ (2011) Electronic interactions within composites of polyanilines formed under acidic and alkaline conditions. Conductivity, ESR, Raman, UV-vis and fluorescence studies. Physical chemistry chemical physics : PCCP 13:3303–3310

    Article  CAS  Google Scholar 

  34. Anilkumar P, Jayakannan M (2007) Single-molecular-system-based selective micellar templates for polyaniline nanomaterials: control of shape, size, solid state ordering, and expanded chain to coillike conformation. Macromolecules 40:7311–7319

    Article  CAS  Google Scholar 

  35. Chao L, Ho K-S, Shen S-Y, Pu H-Y, Hsieh T-H, Kuo C-W, Tseng B-H (2013) Short polyaniline nanorod prepared in the presence of para-phenylenediamine. J Appl Polym Sci 127:1853–1862

    Article  CAS  Google Scholar 

  36. Xiang J, Drzal LT (2012) Templated growth of polyaniline on exfoliated graphene nanoplatelets (GNP) and its thermoelectric properties. Polymer 53:4202–4210

    Article  CAS  Google Scholar 

  37. Meng C, Liu C, Fan S (2010) A promising approach to enhanced thermoelectric properties using carbon nanotube networks. Adv Mater 22:535–539

    Article  CAS  Google Scholar 

  38. Li J, Tang X, Li H, Yan Y, Zhang Q (2010) Synthesis and thermoelectric properties of hydrochloric acid-doped polyaniline. Synth Met 160:1153–1158

    Article  CAS  Google Scholar 

  39. Yoon CO, Reghu M, Moses D, Heeger AJ, Cao Y (1993) Counterion-induced processibility of polyaniline: thermoelectric power. Phys Rev B 48:14080–14084

    Article  CAS  Google Scholar 

  40. Nath C, Kumar A, Kuo Y-K, Okram GS (2014) High thermoelectric figure of merit in nanocrystalline polyaniline at low temperatures. Appl Phys Lett 105:133108

    Article  Google Scholar 

  41. Li Z, Ma G, Jiang F, Zhou Y, Li K, Min X, Huo K, Zhou Y (2016) Free-standing conducting polymer films for high-performance energy devices. Angew Chem Int Ed 55:979–982

    Article  CAS  Google Scholar 

  42. Culebras M, Gómez CM, Cantarero A (2014) Enhanced thermoelectric performance of PEDOT with different counter-ions optimized by chemical reduction. J Mater Chem A 2:10109–10115

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Natural Science Foundation of China (51402134, 51463008, 51572117, 61404062, and 21563013), the Natural Science Foundation of Jiangxi Province (20161BAB216129), Jiangxi Provincial Department of Education (GJJ150809), and the Foundation of Jiangxi Science and Technology Normal University (2014QNBJRC001 and 2015CXTD001) for their financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingkun Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, F., Wang, L., Li, C. et al. Effects of solvents on thermoelectric performance of PANi/PEDOT/PSS composite films. J Polym Res 24, 68 (2017). https://doi.org/10.1007/s10965-017-1226-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1226-3

Keywords

Navigation