Advertisement

Journal of Polymer Research

, 23:260 | Cite as

Study on morphology, thermal, mechanical and Cd(II) adsorption properties of PVC/α-MnO2-stearic acid nanocomposites: production and application

  • Amir Abdolmaleki
  • Shadpour Mallakpour
  • Hashem Tabebordbar
ORIGINAL PAPER

Abstract

Alpha manganese dioxide nanorods (α-MnO2) were successfully functionalized with stearic acid (SA) by solvothermal method to prevent agglomeration. The α-MnO2-SA nanorods were employed as a filler for the preparation of poly(vinyl chloride) (PVC) nanocomposite (NC) films with different percentages (1, 3 and 5 wt%). The morphology, mechanical and thermal properties of the obtained NCs were investigated. The results showed that α-MnO2-SA can effectively improve the properties of PVC. The enhancement in properties of the NCs was attributed to the improved interfacial bonding by modification. Also, these NCs were used as adsorbent for removal of cadmium ions. Our finding suggests that the PVC/α-MnO2-SA NCs are good candidates for efficient Cd(ІІ) removal from the wastewater.

Keywords

Nanocomposites Poly(vinyl chloride) α-MnO2 nanorod Stearic acid Cd(ІІ) adsorption 

Notes

Acknowledgements

The authors appreciatively acknowledge the financial support of the Research Affairs Division, Isfahan University of Technology (IUT), Isfahan, Iran. Further financial support from National Elite Foundation (NEF) of Iran, and Center of Excellence in Sensors and Green Chemistry also thankfully acknowledged.

References

  1. 1.
    Prateek TVK, Gupta RK (2016) Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev 116:4260–4317. doi: 10.1021/acs.chemrev.5b00495 CrossRefGoogle Scholar
  2. 2.
    Aloui H, Khwaldia K, Hamdi M, et al. (2016) Synergistic effect of halloysite and cellulose Nanocrystals on the functional properties of PVA based nanocomposites. ACS Sustain Chem Eng 4:794–800. doi: 10.1021/acssuschemeng.5b00806 CrossRefGoogle Scholar
  3. 3.
    Kong Q, Tang Y, Hu Y, et al. (2012) Thermal stability and flame retardance properties of acrylonitrile-butadiene-styrene/polyvinyl chloride/organophilic Fe-montmorillonite nanocomposites. J Polym Res 19:9751. doi: 10.1007/s10965-011-9751-y CrossRefGoogle Scholar
  4. 4.
    Mallakpour S, Jarahiyan A (2015) An eco-friendly approach for the synthesis of biocompatible poly(vinyl alcohol) nanocomposite with aid of modified CuO nanoparticles with citric acid and vitamin C: mechanical, thermal and optical properties. J Iran Chem Soc. doi: 10.1007/s13738-015-0760-3 Google Scholar
  5. 5.
    Saadatabadi NM, Nateghi MR, Borhanizarandi M (2014) Fabrication and characterization of nanosilver intercalated graphene embedded poly(vinyl chloride)composite thin films. J Polym Res 21:527–535. doi: 10.1007/s10965-014-0527-z CrossRefGoogle Scholar
  6. 6.
    Guzman A, Arroyo J, Verde L, Rengifo J (2015) Synthesis and characterization of copper nanoparticles/polyvinyl chloride (Cu NPs/PVC) nanocomposites. Proc Math Sci 9:298–304. doi: 10.1016/j.mspro.2015.04.038 Google Scholar
  7. 7.
    Deshmukh K, Khatake SM, Joshi GM (2013) Surface properties of graphene oxide reinforced polyvinyl chloride nanocomposites. J Polym Res 20:286. doi: 10.1007/s10965-013-0286-2 CrossRefGoogle Scholar
  8. 8.
    Ebnalwaled AA, Thabet A (2016) Controlling the optical constants of PVC nanocomposite films for optoelectronic applications. Synth Met 220:374–383. doi: 10.1016/j.synthmet.2016.07.006 CrossRefGoogle Scholar
  9. 9.
    Mansour SA, Elsad RA, Izzularab MA (2016) Dielectric properties enhancement of PVC nanodielectrics based on synthesized ZnO nanoparticles. J Polym Res 23:85. doi: 10.1007/s10965-016-0978-5 CrossRefGoogle Scholar
  10. 10.
    Peprnicek T, Kalendova A, Pavlova E, et al. (2006) Poly(vinyl chloride)-paste/clay nanocomposites: investigation of thermal and morphological characteristics. Polym Degrad Stab 91:3322–3329. doi: 10.1016/j.polymdegradstab.2006.06.008 CrossRefGoogle Scholar
  11. 11.
    Matuana LM, Park CB, Bauvhnecz JJ (1998) Cell morphology and property relationships of microcellular foamed PVC/wood-fiber composites. Polym Eng Sci 38:1862–1872. doi: 10.1002/pen.10356 CrossRefGoogle Scholar
  12. 12.
    Sun S, Li C, Zhang L, et al. (2006) Interfacial structures and mechanical properties of PVC composites reinforced by CaCO3 with different particle sizes and surface treatments. Polym Int 55:158–164. doi: 10.1002/pi.1932 CrossRefGoogle Scholar
  13. 13.
    Bai B, Qiao Q, Arandiyan H, et al. (2015) Three-dimensional ordered Mesoporous MnO2 supported Ag nanoparticles for catalytic removal of formaldehyde. Environ Sci Technol 50:2635–2640. doi: 10.1021/acs.est.5b03342 CrossRefGoogle Scholar
  14. 14.
    Rakhi RB, Ahmed B, Anjum D, Alshareef HN (2016) Direct chemical synthesis of MnO2 Nanowhiskers on transition-metal carbide surfaces for Supercapacitor applications. ACS Appl Mater Interfaces 8:18806–18814. doi: 10.1021/acsami.6b04481 CrossRefGoogle Scholar
  15. 15.
    Chae C, Kim KW, Yun YJ, et al. (2016) Polyethylenimine-mediated electrostatic assembly of MnO2 nanorods on graphene oxides for use as anodes in lithium-ion batteries. ACS Appl Mater Interfaces 8:11499–11506. doi: 10.1021/acsami.6b01931 CrossRefGoogle Scholar
  16. 16.
    Jin H, Qian J, Zhou L, et al. (2016) Suppressing the coffee-ring effect in semitransparent MnO2 film for a high-performance solar-powered energy storage window. ACS Appl Mater Interfaces 8:9088–9096. doi: 10.1021/acsami.6b00402 CrossRefGoogle Scholar
  17. 17.
    Guo Y, Guo H, Wang Y, et al. (2014) Designed hierarchical MnO2 microspheres assembled from nanofilms for removal of heavy metal ions. RSC Adv 4:14048. doi: 10.1039/c4ra01044b CrossRefGoogle Scholar
  18. 18.
    Tompsett DA, Islam MS (2013) Electrochemistry of Hollandite α-MnO2: Li-ion and Na-ion insertion and Li2O incorporation. Chem Mater 25:2515–2526. doi: 10.1021/cm400864n CrossRefGoogle Scholar
  19. 19.
    Young MJ, Holder AM, George SM, Musgrave CB (2015) Charge storage in cation incorporated α-MnO2. Chem Mater 27:1172–1180. doi: 10.1021/cm503544e CrossRefGoogle Scholar
  20. 20.
    Xiao G, Tong K, Zhou L, et al. (2012) Adsorption and desorption behavior of lithium ion in spherical PVC-MnO2 ion sieve. Ind Eng Chem Res 51:10921–10929. doi: 10.1021/ie300087s CrossRefGoogle Scholar
  21. 21.
    Liu Y, Luo C, Sun J, et al. (2015) Enhanced adsorption removal of methyl orange from aqueous solution by nanostructured proton-containing δ-MnO2. J Mater Chem A 3:5674–5682. doi: 10.1039/C4TA07112C CrossRefGoogle Scholar
  22. 22.
    Mallakpour S, Abdolmaleki A, Tabebordbar H (2016) Production of PVC/α-MnO2-KH550 nanocomposite films: morphology, thermal, mechanical and Pb (II) adsorption properties. Eur Polym J 78:141–152. doi: 10.1016/j.eurpolymj.2016.03.022 CrossRefGoogle Scholar
  23. 23.
    Singh M, Thanh DN, Ulbrich P, Strnadova N (2010) Synthesis, characterization and study of arsenate adsorption from aqueous solution by α- and δ-phase manganese dioxide nanoadsorbents. J Solid State Chem 183:2979–2986. doi: 10.1016/j.jssc.2010.09.023 CrossRefGoogle Scholar
  24. 24.
    Abdolmaleki A, Mallakpour S, Borandeh S (2012) The use of novel biodegradable, optically active and nanostructured poly (amide-ester-imide) as a polymer matrix for preparation of modified ZnO based bionanocomposites. Mater Res Bull 47:1123–1129. doi: 10.1016/j.materresbull.2012.02.015 CrossRefGoogle Scholar
  25. 25.
    Yu LY, Shen HM, Xu ZL (2009) PVDF-TiO2 composite hollow fiber ultrafiltration membranes prepared by TiO2 Sol–gel method and blending method. J Appl Phys 113:1763–1772. doi: 10.1002/app Google Scholar
  26. 26.
    Gilbert B, Ono RK, Ching KA, Kim CS (2009) The effects of nanoparticle aggregation processes on aggregate structure and metal uptake. J Colloid Interface Sci 339:285–295. doi: 10.1016/j.jcis.2009.07.058 CrossRefGoogle Scholar
  27. 27.
    Cao Z, Daly M, Clémence L, et al. (2016) Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods. Appl Surf Sci 378:320–329. doi: 10.1016/j.apsusc.2016.03.205 CrossRefGoogle Scholar
  28. 28.
    Mishra S, Shimpi NG, Mali AD (2011) Influence of stearic acid treated nano-CaCO3 on the properties of silicone nanocomposites. J Polym Res 18:1715–1724. doi: 10.1007/s10965-011-9577-7 CrossRefGoogle Scholar
  29. 29.
    Gonzalez L, Lafleur P, Lozano T, et al. (2013) Mechanical and thermal properties of polypropylene/montmorillonite nanocomposites using stearic acid as both an Interface and a clay surface modifier. Polym Compos 35:1–9. doi: 10.1002/pc CrossRefGoogle Scholar
  30. 30.
    Wang QI, Xia H, Zhang C (2001) Preparation of polymer/ inorganic nanoparticles composites. J Appl Polym Sci 80:1478–1488CrossRefGoogle Scholar
  31. 31.
    Wang X, Li Y (2002) Rational synthesis of α-MnO2 single-crystal nanorods. Chem Commun 764–765Google Scholar
  32. 32.
    Kang L, Zhang M, Liu ZH, Ooi K (2007) IR spectra of manganese oxides with either layered or tunnel structures. Spectrochim Acta - Part A Mol Biomol Spectrosc 67:864–869. doi: 10.1016/j.saa.2006.09.001 CrossRefGoogle Scholar
  33. 33.
    Li L, Pan Y, Chen L, Li G (2007) One-dimensional α-MnO2: trapping chemistry of tunnel structures, structural stability, and magnetic transitions. J Solid State Chem 180:2896–2904. doi: 10.1016/j.jssc.2007.08.017 CrossRefGoogle Scholar
  34. 34.
    Wekesa I (2013) Synthesis and characterization of whisker-shaped MnO2 nanostructure at room temperature. Appl Nanosci 3:329–333. doi: 10.1007/s13204-012-0135-3 CrossRefGoogle Scholar
  35. 35.
    Vasanthkumar MS, Bhatia R, Arya VP, Sameera I, Prasad V, Jayanna HS (2014) Characterization, charge transport and magnetic properties of multi-walled carbon nanotube-polyvinyl chloride nanocomposites. Phys E Low-Dimensional Syst Nanostruct 56:10–16. doi: 10.1016/j.physe.2013.08.010 CrossRefGoogle Scholar
  36. 36.
    Zhou F, Zhao X, Yuan C, Xu H (2007) Synthesis of γ-MnOOH nanorods and their isomorphous transformation into β-MnO2 and α-Mn2O3 nanorods. J Mater Sci 42:9978–9982. doi: 10.1007/s10853-007-2054-3 CrossRefGoogle Scholar
  37. 37.
    Devaraj S, Munichandraiah N (2007) Surfactant stabilized nanopetals morphology of α-MnO2 prepared by microemulsion method. J Solid State Electrochem 12:207–211. doi: 10.1007/s10008-007-0364-7 CrossRefGoogle Scholar
  38. 38.
    Umek P, Korosec RC, Gloter A, Pirnat U (2011) The control of the diameter and length of α-MnO2 nanorods by regulation of reaction parameters and their thermogravimetric properties. Mater Res Bull 46:278–284. doi: 10.1016/j.materresbull.2010.10.012 CrossRefGoogle Scholar
  39. 39.
    Mallakpour S, Javadpour M (2015) Design and characterization of novel poly(vinyl chloride) nanocomposite films with zinc oxide immobilized with biocompatible citric acid. Colloid Polym Sci 293:2565–2573. doi: 10.1007/s00396-015-3647-z CrossRefGoogle Scholar
  40. 40.
    Jiang X, Rui Y, Chen G (2009) Improved properties of cotton by atmospheric pressure plasma polymerization deposition of Sericin. J Vinyl Addit Technol 21:129–133. doi: 10.1002/vnl Google Scholar
  41. 41.
    Ahn SH, Park JT, Kim JH, et al. (2011) Nanocomposite membranes consisting of poly(vinyl chloride) graft copolymer and surface-modified silica nanoparticles. Macromol Res 19:1195–1201. doi: 10.1007/s13233-011-1116-1 CrossRefGoogle Scholar
  42. 42.
    Liu C, Luo YF, Jia ZX, et al. (2011) Enhancement of mechanical properties of poly(vinyl chloride) with Polymethyl methacrylate-grafted halloysite nanotube. Express Polym Lett 5:591–603. doi: 10.3144/expresspolymlett.2011.58 CrossRefGoogle Scholar
  43. 43.
    Rao K, Mohapatra M, Anand S, Venkateswarlu P (2011) Review on cadmium removal from aqueous solutions. Int J Eng Sci Technol 2:81–103. doi: 10.4314/ijest.v2i7.63747 Google Scholar
  44. 44.
    Feng XH, Zhai LM, Tan WF, et al. (2007) Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals. Environ Pollut 147:366–373. doi: 10.1016/j.envpol.2006.05.028 CrossRefGoogle Scholar
  45. 45.
    Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. doi: 10.1016/j.cej.2009.09.013 CrossRefGoogle Scholar
  46. 46.
    Dong L, Zhu Z, Ma H, Qiu Y (2010) Simultaneous adsorption of lead and cadmium on MnO2-loaded resin. J Environ Sci 22:225–229. doi: 10.1016/S1001-0742(09)60097-8 CrossRefGoogle Scholar
  47. 47.
    Zhu ZL, Ma HM, Zhang RH, Ge YX, Zhao JF (2007) Removal of cadmium using MnO2 loaded D301 resin. J Environ Sci 19:652–656. doi: 10.1016/S1001-0742(07)60109-0 CrossRefGoogle Scholar
  48. 48.
    Laus R, De Favere VT (2011) Competitive adsorption of Cu(II) and Cd(II) ions by chitosan crosslinked with epichlorohydrin-triphosphate. Bioresour Technol 102:8769–8776. doi: 10.1016/j.biortech.2011.07.057 CrossRefGoogle Scholar
  49. 49.
    Guijarro-Aldaco A, Hernandez-Montoya V, Bonilla-Petriciolet A, et al. (2011) Improving the adsorption of heavy metals from water using commercial carbons modified with egg shell wastes. Ind Eng Chem Res 50:9354–9362. doi: 10.1021/ie2006627 CrossRefGoogle Scholar
  50. 50.
    Rout K, Mohapatra M, Mohapatra BK, Anand S (2009) Pb ( II ), Cd ( II ) and Zn ( II ) adsorption on low grade manganese ore. Int J Phys Sci 1:106–122Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Organic Polymer Chemistry Research Laboratory, Department of ChemistryIsfahan University of TechnologyIsfahanIslamic Republic of Iran
  2. 2.Nanotechnology and Advanced Materials InstituteIsfahan University of TechnologyIsfahanIslamic Republic of Iran

Personalised recommendations