Skip to main content
Log in

Solvent-induced crystallization of electrospun syndiotactic polystyrene nanofibers and its reversible desorption/sorption of volatile organic vapors

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Electrospun fiber mats are promising media for chemical separation because of their porous interior and high surface area, which enhance penetrant permeation and provide a large number of active sites. The application of this technology was fulfilled in the present study, wherein syndiotactic polystyrene (sPS) fibers were prepared by high-temperature solution electrospinning to absorb volatile organic compounds. The as-spun sPS fibers had an average radius of ~360 nm and were amorphous as revealed by Fourier transform infrared spectroscopy (FTIR) and wide-angle X-ray diffraction. When the electrospun fibers were exposed to different solvent vapors, solvent-induced crystallization occurred in these submicron-sized fibers to form δ- or γ-form sPS crystals, depending on the solvent used. To trace the microstructure transformation of sPS chains induced by the solvent vapors, in situ FTIR spectral measurements were performed. The absorbance of crystallization-sensitive IR bands was plotted against time, from which the crystallization kinetics were analyzed based on the Avrami equation. Results showed that the rate of solvent-induced crystallization was higher for solvents with a higher saturated vapor pressure. Subsequent solvent desorption from the crystallized sPS fibers was also studied under ambient conditions by monitoring the absorbance variation of the solvent-sensitive IR band. Two-stage solvent desorption was observed in the δ-form sPS fibers; this process consisted of initial rapid desorption from the amorphous region, followed by slow desorption from the crystalline region. Notably, all the solvent molecules in the treated fibers can be completely removed in this manner, thereby leading to the formation of δ e-form crystals for repetitive sorption/desorption applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gowd EB, Tashiro K, Ramesh C (2009) Prog Polym Sci 34:280–315

    Article  CAS  Google Scholar 

  2. Milano G, Guerra G (2009) Prog Mater Sci 54:68–88

    Article  CAS  Google Scholar 

  3. Chatani Y, Shimane Y, Inagaki T, Ijitsu T, Yukinari T, Shikuma H (1993) Polymer 34:1620–1624

    Article  CAS  Google Scholar 

  4. Rizzo P, Albunia AR, Guerra G (2005) Polymer 46:9549–9554

    Article  CAS  Google Scholar 

  5. Milano G, Venditto V, Guerra G, Cavallo L, Ciambelli P, Sannino D (2001) Chem Mater 13:1506–1511

    Article  CAS  Google Scholar 

  6. Uda Y, Kaneko F, Kawaguchi T (2004) Polymer 45:2221–2229

    Article  CAS  Google Scholar 

  7. Ma W, Yu J, He J (2005) Macromolecules 38:4755–4760

    Article  CAS  Google Scholar 

  8. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) Compos Sci Technol 63:2223–2253

    Article  CAS  Google Scholar 

  9. Reneker DH, Yarin AL (2008) Polymer 49:2387–2425

    Article  CAS  Google Scholar 

  10. Greiner A, Wendorff JH (2007) Angew Chem Int Ed 46:5670–5703

    Article  CAS  Google Scholar 

  11. Zhu H, Qiu S, Jiang W, Wu D, Zhang C (2011) Environ Sci Technol 45:4527–4531

    Article  CAS  Google Scholar 

  12. Bertarelli C, Zanutta A, Bianco A, Daniel C (2011) Soft Mater 9:303–312

    Article  CAS  Google Scholar 

  13. Givens SR, Gardner KH, Rabolt JF, Chase DB (2007) Macromolecules 40:608–610

    Article  CAS  Google Scholar 

  14. Rein DM, Shavit-Hadar L, Khalfin RL, Cohen Y, Shuster K, Zussman E (2007) J Polym Sci Polym Phys 45:766–773

    Article  CAS  Google Scholar 

  15. Yoshioka T, Dersch R, Tsuji M, Schaper AK (2010) Polymer 51:2383–2389

    Article  CAS  Google Scholar 

  16. Cheng Y, Lu H, Wang Y, Thierry A, Lotz B, Wang C (2010) Macromolecules 43:2371–2376

    Article  CAS  Google Scholar 

  17. Tashiro K, Ueno Y, Yoshioka A, Kobayashi M (2001) Macromolecules 34:310–315

    Article  CAS  Google Scholar 

  18. Yoshioka A, Tashiro K (2003) Polymer 44:6681–6688

    Article  CAS  Google Scholar 

  19. Brandrup J, Immergut EH (1989) Polymer handbook, 3rd ed. Wiley-Interscience, New York, sec. III

    Google Scholar 

  20. Durning CJ, Rebenfeld WB, Russel WB, Weigmann HD (1986) J Polym Sci Polym Phys 24:1321–1340

    Article  CAS  Google Scholar 

  21. Ouyang H, Lee WH, Shih MC (2002) Macromolecules 35:8428–8432

    Article  CAS  Google Scholar 

  22. Wunderlich B (1976) Macromolecular physics, Vol. 2. Academic, New York

    Google Scholar 

  23. Gowd EB, Shibayama N, Tashiro K (2008) Macromolecules 41:2541–2547

    Article  CAS  Google Scholar 

  24. Ritger PL, Reppas NA (1987) J Contrl Release 5:23–36

    Article  CAS  Google Scholar 

  25. Wang TT, Kwei TK (1973) Macromolecules 6:919–921

    Article  CAS  Google Scholar 

  26. Bernes AR, Hopfenberg HB (1982) J Membr Sci 10:283–303

    Article  Google Scholar 

  27. Venditto V, Del Mauro ADG, Mensitieri G, Milano G, Musto P, Rizzo P, Guerra G (2006) Chem Mater 18:2205–2210

    Article  CAS  Google Scholar 

  28. Gowd EB, Tashiro K (2007) Macromolecules 40:5366–5371

    Article  CAS  Google Scholar 

  29. Gowd EB, Shibayama N, Tashiro K (2006) Macromolecules 39:8412–8418

    Article  CAS  Google Scholar 

  30. Vrentas JS, Jarzebski CM, Duda JL (1975) AIChE J 21:894–901

    Article  CAS  Google Scholar 

  31. Durning CJ, Rebenfeld L, Russel WB, Weigmann HD (1986) J Polym Sci Polym Phys 24:1341–1360

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology of Taiwan (NSC96-2918-I-006-011 and MOST103-2221-E-006-262-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Wang.

Electronic supplementary material

Avrami plots of solvent-treated fibers.

Figure S1

(DOC 120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, YW., Wang, C. Solvent-induced crystallization of electrospun syndiotactic polystyrene nanofibers and its reversible desorption/sorption of volatile organic vapors. J Polym Res 23, 234 (2016). https://doi.org/10.1007/s10965-016-1130-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1130-2

Keywords

Navigation