Journal of Polymer Research

, 23:232 | Cite as

Electrospun PVDF graphene oxide composite fibre mats with tunable physical properties

  • Ahmed A. Issa
  • Mariam Al Ali S. Al-Maadeed
  • Miroslav Mrlík
  • Adriaan S. Luyt


This article is aimed at a basic physical characterization of electrospun PVDF/graphene oxide (GO) composite non-woven fibre mats. The morphological characterization of the prepared fabrics was performed via SEM investigations. Introduction of the GO during the electrospinning process caused significant changes in the crystalline structure of PVDF, and a transformation from α- to β-crystalline phases was achieved. Addition of the GO particles into PVDF did not only improve the thermal stability of the polymer, but also acted as a reinforcing filler, giving rise to improved dynamic moduli and tensile strength. The dielectric properties were evaluated over a broad frequency range, and it was confirmed that the presence of small amounts of GO had little effect on the dielectric properties of the PVDF, since the GO has a dielectric character similar to that of the PVDF.


PVDF Graphene oxide Electrospun fibres Dielectric properties Mechanical properties Thermal properties 



This article was made possible by student grant (QUST-CAM-FALL-14/15-1) from the College of Arts and Sciences at Qatar University. The statements made herein are solely the responsibility of the authors.


  1. 1.
    Huang L, Lu C, Wang F, Wang L (2014) Preparation of PVDF/graphene ferroelectric composite films by in situ reduction with hydrobromic acids and their properties. RSC Adv 4:45220–45229CrossRefGoogle Scholar
  2. 2.
    Chang C, Van Tran H, Wang J, Fuh Y-K, Lin L (2010) Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10:726–731CrossRefGoogle Scholar
  3. 3.
    Zang W-b, Xu X-l, Yang J-h, Hiuang T, Zhang N, Wang Y, Zhou Z-w (2015) High thermal conductivity of poly(vinylidene fluoride)/carbon nanotubes nanocomposites achieved by adding polyvinylpyrrolidone. Compos Sci Technol 106:1–8CrossRefGoogle Scholar
  4. 4.
    Shao H, Fang J, Wang H, Lin T (2015) Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly(vinylidene fluoride) nanofiber mats. RSC Adv 5:14345–14350CrossRefGoogle Scholar
  5. 5.
    Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39:683–706CrossRefGoogle Scholar
  6. 6.
    Maji S, Sarkar PK, Aggarwal L, Ghosh SK, Mandal D, Sheet G, Acharya S (2015) Self-oriented beta-crystalline phase in the polyvinylidene fluoride ferroelectric and piezo-sensitive ultrahin Langmuir-Schaefer film. Phys Chem Chem Phys 17:8159–8165CrossRefGoogle Scholar
  7. 7.
    Li L, Zhang M, Rong M, Ruan W (2014) Studies on the transformation process of PVDF from alpha to beta phase by stretching. RSC Adv 4:3938–3943CrossRefGoogle Scholar
  8. 8.
    Liu G, Schneider K, Zheng L, Zhang X, Li C, Stamm M, Wang D (2014) Stretching induced phase separation in poly(vinylidene fluoride)/poly(butylene succinate) blends studies in-situ X-ray scattering. Polymer 55:2588–2596CrossRefGoogle Scholar
  9. 9.
    Sharma M, Madras G, Bose S (2014) Process induced electroactive beta-polymorph in PVDF: effect on dielectric and ferroelectric properties. Phys Chem Chem Phys 16:14792–14799CrossRefGoogle Scholar
  10. 10.
    Kim GH, Hong SM, Seo Y (2009) Piezoelectric properties of poly(vinylidene fluoride) and carbon nanotube blends: beta-phase development. Phys Chem Chem Phys 11:10506–10512CrossRefGoogle Scholar
  11. 11.
    Lei T, Cai X, Wang X, Yu L, Hu X, Zheng G, Lv W, Wang L, Wu D, Sun D, Lin L (2013) Spectroscopic evidence for high fraction of ferroelectric phase induced in electrospun polyvinylidene fluoride fibers. RSC Adv 3:24952–24958CrossRefGoogle Scholar
  12. 12.
    Fang J, Wang X, Lin T (2011) Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride) nanofibre membranes. J Mater Chem 21:11088–11091CrossRefGoogle Scholar
  13. 13.
    Mofokeng TG, Luyt AS, Pavlovic VP, Pavlovic VB, Dudic D, Vlahovic B, Djokovic V (2014) Ferroelectric nanocomposites of polyvinylidene fluoride/polymethyl methacrylate blend and BaTiO3 particles: fabrication of β-crystal polymorph rich matrix through mechanical activation of the filler. J Appl Phys 115:084109CrossRefGoogle Scholar
  14. 14.
    Zhang YY, Jiang SL, Yu Y, Zeng YK, Zhang GZ, Zhang QF, He JG (2012) Crystallization behavior and phase-transformation mechanism with the use of graphite nanosheets in poly(vinylidene fluoride) nanocomposites. J Appl Polym Sci 125:E314–E319CrossRefGoogle Scholar
  15. 15.
    Thangavel E, Ramasundaram S, Pitchaimuthu S, Hong SW, Lee SY, Yoo SS, Kim D-E, Ito E, Kang YS (2014) Structural and tribological characteristics of poly(vinylidene fluoride)/functionalized graphene oxide nanocomposite thin films. Compos Sci Technol 90:187–192CrossRefGoogle Scholar
  16. 16.
    Jia N, Xing Q, Xia G, Sun J, Song R, Huang W (2015) Enhanced beta-crystalline phase in poly(vinylidene fluoride) films by polydopamine-coated BaTiO3 nanoparticles. Mater Lett 139:212–215CrossRefGoogle Scholar
  17. 17.
    Guan X, Zhang Y, Li H, Ou J (2013) PZT/PVDF composites doped with carbon nanotubes. Sensors Actuators A Phys 194:228–231CrossRefGoogle Scholar
  18. 18.
    Jaleh B, Fakhri P, Noroozi M, Muensit N (2012) Influence of copper nanoparticles concentration on the properties of poly(vinylidene fluoride)/Cu nanoparticles nanocomposite films. J Inorg Organomet Polym Mater 22:878–885CrossRefGoogle Scholar
  19. 19.
    Vasundhara K, Mandal BP, Tyagi AK (2015) Enhancement of dielectric permittivity and ferroelectricity of a modified cobalt nanoparticle and polyvinylidene fluoride based composite. RSC Adv 5:8591–8597CrossRefGoogle Scholar
  20. 20.
    An N, Liu H, Ding Y, Zhang M, Tang Y (2011) Preparation and electroactive properties of a PVDF/nano-TiO2 composite film. Appl Surf Sci 257:3831–3835CrossRefGoogle Scholar
  21. 21.
    Jaleh B, Jabbari A (2014) Evaluation of reduced graphene oxide/ZnO effect on properties of PVDF nanocomposite films. Appl Surf Sci 320:339–347CrossRefGoogle Scholar
  22. 22.
    Kenneth JL, Donghee C (2011) Zinc oxide nanoparticle-polymeric thin films for dynamic strain sensing. J Mater Sci 46:228–237CrossRefGoogle Scholar
  23. 23.
    Li Z, Zhang X, Li G (2014) In situ ZnO nanowire growth to promote the PVDF pieto phase and the ZnO-PVDF hybrid self-rectified nanogenerator as a touch sensor. Phys Chem Chem Phys 16:5475–5479CrossRefGoogle Scholar
  24. 24.
    Fang L, Wu W, Hiuang X, He J, Jiang P (2015) Hydrangea-like zinc oxide superstructures for ferroelectric polymer composites with high thermal conductivity and high dielectric constant. Compos Sci Technol 107:67–74CrossRefGoogle Scholar
  25. 25.
    El Achaby M, Arrakhiz FZ, Vaudreuil S, Essassi EM, Qaiss A (2012) Piezoelectric β-polymorph formation and properties enhancement in graphene oxide – PVDF nanocomposite films. Appl Surf Sci 258:7668–7677CrossRefGoogle Scholar
  26. 26.
    Liu S, Zeng TH, Hofmann N, Burcombe E, Wei J, Jiang R, Kong J, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. J Am Chem Soc 5:6971–6980Google Scholar
  27. 27.
    Wang Z, Yu H, Xia J, Zhang F, Li F, Xia Y, Li Y (2012) Novel GO-blended PVDF ultrafiltration membranes. Desalination 299:50–54CrossRefGoogle Scholar
  28. 28.
    Meng Q-L, Liu H-C, Huang Z, Kong S, Lu X, Tomkins P, Jiang P, Bao X (2016) Mixed conduction properties of pristine bulk graphene oxide. Carbon 101:338–344CrossRefGoogle Scholar
  29. 29.
    Ponnamma D, Guo Q, Krupa I, Al-Maadeed MASA, Varughese KT, Thomas S, Sadasivuni KK (2015) Graphene and graphitic derivative filled polymer composites as potential sensors. Phys Chem Chem Phys 17:3954–3981CrossRefGoogle Scholar
  30. 30.
    Noorunnisa K, Deepalekshmi P, Al-Maadeed MA (2015) In: Kishor KS (ed) Graphene-based polymer nanocomposites in electronics. Springer International Publishing, SwitzerlandGoogle Scholar
  31. 31.
    Issa AI, Al-Maadeed M, Luyt AS, Mrlik M, Hassan MK (2016) Investigation of the physico-mechanical properties of electrospun PVDF/cellulose (nano)fibers. J Appl Polym Sci 133:43594CrossRefGoogle Scholar
  32. 32.
    Won-Chun O, Chin ML, Zhang K, Zhang F-J, Jang W-K, Zhang F-J (2010) The effect of thermal and ultrasonic treatment on the formation of graphene-oxide nanosheets. J Korean Phys Soc 56:1097–1102CrossRefGoogle Scholar
  33. 33.
    Szabo T, Berkesi O, Forgo P, Josepovits K, Sanakis Y, Petridis D, Dekany I (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18:2740–2749CrossRefGoogle Scholar
  34. 34.
    Kudin KN, Ozbas B, Schniep HC, Prud’homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41CrossRefGoogle Scholar
  35. 35.
    Guerrero-Contreras J, Caballero-Briones F (2015) Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Mater Chem Phys 153:209–220CrossRefGoogle Scholar
  36. 36.
    Kumar HV, Woltornist SJ, Adamson DH (2016) Fractionation and characterization of graphene oxide by oxidation extent through emulsion stabilization. Carbon 98:491–495CrossRefGoogle Scholar
  37. 37.
    Krishnamoorthy K, Veerapandian M, Yun K, Kim S-J (2013) The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53:38–49CrossRefGoogle Scholar
  38. 38.
    Konios D, Stylianakis MM, Stratakis E, Kymakis E (2014) Dispersion behaviour of graphene oxide and reduced graphene oxide. J Colloid Interface Sci 430:108–112CrossRefGoogle Scholar
  39. 39.
    Dimiev AM, Tour JM (2014) Mechanism of graphene oxide formation. ACS Nano 8:3060–3068CrossRefGoogle Scholar
  40. 40.
    Park YJ, Kang YS, Park C (2005) Micropatterning of semicrystalline poly(vinylidene fluoride) (PVDF) solutions. Eur Polym J 41:1002–1012CrossRefGoogle Scholar
  41. 41.
    Zhang WL, Liu YD, Choi HJ, Kim SG (2012) Electrorheology of graphene oxide. ACS Appl Mater Interfaces 4:2267–2272CrossRefGoogle Scholar
  42. 42.
    Najafi F, Rajabi M (2015) Thermal gravity analysis for the study of stability of graphene oxide–glycine nanocomposites. Int Nano Lett 5:187–190CrossRefGoogle Scholar
  43. 43.
    Stapler JT, Barnes WJ, Yelland WEC (1968) Thermal degradation of polyvinylidene fluoride and polyvinyl fluoride by oven pyrolysis. Technical Report 69-7-CM, Clothing and Organic Materials Laboratory, US Army Natick LaboratoriesGoogle Scholar
  44. 44.
    Al-Maadeed MA, Shabana YM, Noorunnisa Khanam P (2014) Processing. characterization and modeling of recycled polypropylene/glass fibre/wood flour composites. Mater Des 58:374–380CrossRefGoogle Scholar
  45. 45.
    Ourry L, Marchesini S, Bibani M, Mercone S, Ammar S, Mammeri F (2015) Influence of nanoparticle size and concentration on the electroactive phase content of PVDF in PVDF-CoFe2O4-based hybrid films. Phys Status Solidi A 212:252–258CrossRefGoogle Scholar
  46. 46.
    Ilcikova M, Mrlik M, Sedlacek T, Chorvat D, Krupa I, Slouf M, Koynof K, Mosnacek J (2014) Viscoelastic and photo-actuation studies of composites based on polystyrene-grafted carbon nanotubes and styrene-b-isoprene-b-styrene block copolymer. Polymer 55:211–218CrossRefGoogle Scholar
  47. 47.
    Ilcikova M, Mrlik M, Sedlacek T, Slouf M, Zhigunov A, Koynov K, Mosnacek J (2014) Synthesis of photoactuating acrylic thermoplastic elastomers containing diblock copolymer-grafted carbon nanotubes. ACS Macro Lett 3:999–1003CrossRefGoogle Scholar
  48. 48.
    Ni P, Li H, Yang M, He X, Li Y, Liu Z-H (2010) Study on the assembling reaction of graphite oxide nanosheets and polycations. Carbon 48:2100–2105CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Ahmed A. Issa
    • 1
  • Mariam Al Ali S. Al-Maadeed
    • 1
  • Miroslav Mrlík
    • 1
    • 2
  • Adriaan S. Luyt
    • 1
  1. 1.Center for Advanced MaterialsQatar UniversityDohaQatar
  2. 2.Centre of Polymer SystemsTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations