Skip to main content
Log in

Effect of core-shell particles dispersed morphology on the toughening behavior of PBT/PC blends

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Methyl methacrylate-co-styrene-co-glycidyl methacrylate grafted polybutadiene (PB-g-MSG) and styrene-co-glycidyl methacrylate grafted polybutadiene (PB-g-SG) core-shell particles were prepared to toughen poly (butylene terephthalate) (PBT) and polycarbonate (PC) blends. The compatibilization reaction between the epoxy groups of glycidyl methacrylate and the carboxyl groups of PBT induced the PB-g-SG particles dispersed in the PBT phase. On the other hand, the good miscibility between PMMA (the shell phase of PB-g-MSG) and PC induced the PB-g-MSG particles dispersed in the PC phase. The different phase morphology led to different toughening behavior. The PBT/PC/PB-g-MSG blends with the PC encapsulated morphology showed much lower brittle-ductile transition core-shell particles content (10-15 wt% or 15-20 wt%) compared with the PBT/PC/PB-g-SG blends (20-25 wt%). The difference between the toughening efficiency of the core-shell particles was due to the change of deformation mechanisms. In PBT/PC/PB-g-MSG blends, the cavitation of PB rubber phase led to the occurrence of shear yielding of the matrix. While in the PBT/PC/PB-g-SG blends, the debonding between PBT and PC interface induced the shear yielding of the matrix. The variation of the core-shell particles dispersed phase morphology also affected the crystallization properties and DMA results of the PBT/PC blends. Modification of the phase morphology provided an useful strategy to prepare PBT/PC blends with higher toughening efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. He JX, Guo Y, Sun SL, Zhang HX (2015) J Polym Eng 3:247–256

    Google Scholar 

  2. Jose MRCAS, James T (2006) J Mater Chem 16:237–245

    Article  Google Scholar 

  3. Kooshki RM, Ghasemi I, Karrabi M, Azizi H (2013) J Vinyl Addit Techn 19:203–212

    Article  CAS  Google Scholar 

  4. Sonnier R, Viretto A, Taguet A, Lopez-Cuesta JM (2012) J Appl Polym Sci 125:3148–3158

    Article  CAS  Google Scholar 

  5. Lei CH, Chen DH (2008) J Appl Polym Sci 109:1099–1104

    Article  CAS  Google Scholar 

  6. DePolo WS, Baird DG (2009) Polym Compos 30:188–199

    Article  CAS  Google Scholar 

  7. Kalkar AK, Siesler HW, Pfeifer F, Wadekar SA (2003) Polymer 44:7251–7264

    Article  CAS  Google Scholar 

  8. Zaki MF, Elmaghraby EK, Elbasaty AB (2016) J Adhes Sci Technol 30:443–457

    Article  CAS  Google Scholar 

  9. Bai HY, Zhang Y, Zhang YX, Zhang XF, Zhou W (2005) Polym Test 24:235–240

    Article  CAS  Google Scholar 

  10. Bai HY, Zhang Y, Zhang YX, Zhang XF, Zhou W (2006) J Appl Polym Sci 101:54–62

    Article  CAS  Google Scholar 

  11. Kalhoro MS, Gabrys BJ, Zajac W, King SM, Peiffer (2001) Polymer 42:1679–1690

    Article  CAS  Google Scholar 

  12. Wen TT, Guo Y, Song SX, Sun SL, Zhang HX (2015) J Polym Res 22:222

    Article  Google Scholar 

  13. Guo Y, He JX, Zhang XN, Sun SL, Zhang HX (2015) J Macromol Sci B 54:823835

    Article  Google Scholar 

  14. Guo Y, Sun SL, Zhang HX (2014) RSC Adv 4:58880–58887

    Article  CAS  Google Scholar 

  15. Lin GP, Lin L, Wang XL, Chen L, Wang YZ (2015) Ind Eng Chem Res 54:1282–1291

    Article  CAS  Google Scholar 

  16. Sun SL, Zhang FF, Fu Y, Zhou C, Zhang HX (2013) J Macromol Sci B 52:861–872

    Article  CAS  Google Scholar 

  17. Kuram E, Ozcelik B, Yilmaz F, Timur G, Sahin ZM (2014) Polym Compos 35:2074–2084

    Article  CAS  Google Scholar 

  18. Kuram E, Timur G, Ozcelik B, Yilmaz F (2014) Mater Manuf Process 29:1260–1268

    Article  CAS  Google Scholar 

  19. Zhang FF, Sun SL, Liu XY, Zhang LX, Zhang HX (2009) E-polymers 77:1–11

    Google Scholar 

  20. Wu JS, Wang K, Yu DM (2003) J Mater Sci 38:183–191

    Article  CAS  Google Scholar 

  21. Wu JS, Mai YW, Yee AF (2000) J Mater Sci 35:307–315

    Article  CAS  Google Scholar 

  22. Tseng WTW, Lee JS (2000) J Appl Polym Sci 76:1280–1284

    Article  CAS  Google Scholar 

  23. Brady AJ, Keskkula H, Paul DR (1994) Polymer 35:3665–3672

    Article  CAS  Google Scholar 

  24. Okamoto M, Shinoda Y, Kojima T, Inoue T (1994) Polymer 35:4868–4873

    Google Scholar 

  25. Memon AN (1994) J Appl Polym Sci 54:1059–1072

    Article  CAS  Google Scholar 

  26. Hale W, Keskkula H, Paul DR (1999) Polymer 40:365–377

    Article  CAS  Google Scholar 

  27. Oyamaa HT, Kitagawab T, Ougizawab T, Inouec T, Weberd M (2004) Polymer 45:10331043

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (51273025, 51272026, and 50803007) and Jilin Provincial Science & Technology Department (20140101104JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shulin Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, B., Guo, Y., Song, S. et al. Effect of core-shell particles dispersed morphology on the toughening behavior of PBT/PC blends. J Polym Res 23, 210 (2016). https://doi.org/10.1007/s10965-016-1106-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1106-2

Keywords

Navigation