Journal of Polymer Research

, 23:210 | Cite as

Effect of core-shell particles dispersed morphology on the toughening behavior of PBT/PC blends

  • Bin Deng
  • Yang Guo
  • Shixin Song
  • Shulin Sun
  • Huixuan Zhang


Methyl methacrylate-co-styrene-co-glycidyl methacrylate grafted polybutadiene (PB-g-MSG) and styrene-co-glycidyl methacrylate grafted polybutadiene (PB-g-SG) core-shell particles were prepared to toughen poly (butylene terephthalate) (PBT) and polycarbonate (PC) blends. The compatibilization reaction between the epoxy groups of glycidyl methacrylate and the carboxyl groups of PBT induced the PB-g-SG particles dispersed in the PBT phase. On the other hand, the good miscibility between PMMA (the shell phase of PB-g-MSG) and PC induced the PB-g-MSG particles dispersed in the PC phase. The different phase morphology led to different toughening behavior. The PBT/PC/PB-g-MSG blends with the PC encapsulated morphology showed much lower brittle-ductile transition core-shell particles content (10-15 wt% or 15-20 wt%) compared with the PBT/PC/PB-g-SG blends (20-25 wt%). The difference between the toughening efficiency of the core-shell particles was due to the change of deformation mechanisms. In PBT/PC/PB-g-MSG blends, the cavitation of PB rubber phase led to the occurrence of shear yielding of the matrix. While in the PBT/PC/PB-g-SG blends, the debonding between PBT and PC interface induced the shear yielding of the matrix. The variation of the core-shell particles dispersed phase morphology also affected the crystallization properties and DMA results of the PBT/PC blends. Modification of the phase morphology provided an useful strategy to prepare PBT/PC blends with higher toughening efficiency.


PBT Pc Core-shell Particles Toughening 



This work was financially supported by the National Natural Science Foundation of China (51273025, 51272026, and 50803007) and Jilin Provincial Science & Technology Department (20140101104JC).


  1. 1.
    He JX, Guo Y, Sun SL, Zhang HX (2015) J Polym Eng 3:247–256Google Scholar
  2. 2.
    Jose MRCAS, James T (2006) J Mater Chem 16:237–245CrossRefGoogle Scholar
  3. 3.
    Kooshki RM, Ghasemi I, Karrabi M, Azizi H (2013) J Vinyl Addit Techn 19:203–212CrossRefGoogle Scholar
  4. 4.
    Sonnier R, Viretto A, Taguet A, Lopez-Cuesta JM (2012) J Appl Polym Sci 125:3148–3158CrossRefGoogle Scholar
  5. 5.
    Lei CH, Chen DH (2008) J Appl Polym Sci 109:1099–1104CrossRefGoogle Scholar
  6. 6.
    DePolo WS, Baird DG (2009) Polym Compos 30:188–199CrossRefGoogle Scholar
  7. 7.
    Kalkar AK, Siesler HW, Pfeifer F, Wadekar SA (2003) Polymer 44:7251–7264CrossRefGoogle Scholar
  8. 8.
    Zaki MF, Elmaghraby EK, Elbasaty AB (2016) J Adhes Sci Technol 30:443–457CrossRefGoogle Scholar
  9. 9.
    Bai HY, Zhang Y, Zhang YX, Zhang XF, Zhou W (2005) Polym Test 24:235–240CrossRefGoogle Scholar
  10. 10.
    Bai HY, Zhang Y, Zhang YX, Zhang XF, Zhou W (2006) J Appl Polym Sci 101:54–62CrossRefGoogle Scholar
  11. 11.
    Kalhoro MS, Gabrys BJ, Zajac W, King SM, Peiffer (2001) Polymer 42:1679–1690CrossRefGoogle Scholar
  12. 12.
    Wen TT, Guo Y, Song SX, Sun SL, Zhang HX (2015) J Polym Res 22:222CrossRefGoogle Scholar
  13. 13.
    Guo Y, He JX, Zhang XN, Sun SL, Zhang HX (2015) J Macromol Sci B 54:823835CrossRefGoogle Scholar
  14. 14.
    Guo Y, Sun SL, Zhang HX (2014) RSC Adv 4:58880–58887CrossRefGoogle Scholar
  15. 15.
    Lin GP, Lin L, Wang XL, Chen L, Wang YZ (2015) Ind Eng Chem Res 54:1282–1291CrossRefGoogle Scholar
  16. 16.
    Sun SL, Zhang FF, Fu Y, Zhou C, Zhang HX (2013) J Macromol Sci B 52:861–872CrossRefGoogle Scholar
  17. 17.
    Kuram E, Ozcelik B, Yilmaz F, Timur G, Sahin ZM (2014) Polym Compos 35:2074–2084CrossRefGoogle Scholar
  18. 18.
    Kuram E, Timur G, Ozcelik B, Yilmaz F (2014) Mater Manuf Process 29:1260–1268CrossRefGoogle Scholar
  19. 19.
    Zhang FF, Sun SL, Liu XY, Zhang LX, Zhang HX (2009) E-polymers 77:1–11Google Scholar
  20. 20.
    Wu JS, Wang K, Yu DM (2003) J Mater Sci 38:183–191CrossRefGoogle Scholar
  21. 21.
    Wu JS, Mai YW, Yee AF (2000) J Mater Sci 35:307–315CrossRefGoogle Scholar
  22. 22.
    Tseng WTW, Lee JS (2000) J Appl Polym Sci 76:1280–1284CrossRefGoogle Scholar
  23. 23.
    Brady AJ, Keskkula H, Paul DR (1994) Polymer 35:3665–3672CrossRefGoogle Scholar
  24. 24.
    Okamoto M, Shinoda Y, Kojima T, Inoue T (1994) Polymer 35:4868–4873Google Scholar
  25. 25.
    Memon AN (1994) J Appl Polym Sci 54:1059–1072CrossRefGoogle Scholar
  26. 26.
    Hale W, Keskkula H, Paul DR (1999) Polymer 40:365–377CrossRefGoogle Scholar
  27. 27.
    Oyamaa HT, Kitagawab T, Ougizawab T, Inouec T, Weberd M (2004) Polymer 45:10331043CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Bin Deng
    • 1
  • Yang Guo
    • 1
  • Shixin Song
    • 1
  • Shulin Sun
    • 1
  • Huixuan Zhang
    • 1
  1. 1.Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of EducationChangchun University of TechnologyChangchunChina

Personalised recommendations