Journal of Polymer Research

, 23:195 | Cite as

Polymersomes mimic biofilms fractal growth

  • Alfredo Gonzalez-Perez
  • Kasper Feld
  • Juan M. Ruso


We have mimicked the biofilm formation with highly stable biocompatible poly(2-methyl-2-oxazoline)-based polymersomes by simple spreading-drying of a droplet of the sample solution onto a glass support. The diffusion-limited aggregation process of polymersomes onto the surface was analyzed within a fractal framework. The different examples analyzed and presented together indicate one means by which the aggregation process can be controlled and predicted. The anti-bacterial adhesion properties of poly(2-methyl-2-oxazoline) allow potential uses in surface modification for biofouling prevention improving stability and response time.

Graphical abstract


Biofilms fractals polymersomes AFM 



The authors thank Prof. Namiko Mitarai for the useful discussions about the fractal patterns. The financial support from VINNOVA, Stockholm, project number 2016-00414, is acknowledged. JMR thanks Fundación Ramón Areces, Spanish Ministry of Economy and Competitiveness MINECO (MAT2015-71826-P) and Xunta de Galicia (AGRUP2015/11) for financial support.


  1. 1.
    Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the Natural environment to infectious diseases. Nat Rev Micro 2(2):95–108CrossRefGoogle Scholar
  2. 2.
    Flemming HC, Wingender J, Szewzyk U (2011) Biofilm Highlights. Springer Science & Business Media, BerlinCrossRefGoogle Scholar
  3. 3.
    Rudge TJ, Federici F, Steiner PJ, Kan A, Haseloff J (2013) Cell Polarity-Driven Instability Generates Self-Organized, Fractal Patterning of Cell Layers. ACS Synth Biol 2(12):705–714. doi: 10.1021/sb400030p CrossRefGoogle Scholar
  4. 4.
    Rudge TJ, Steiner PJ, Phillips A, Haseloff J (2012) Computational Modeling of Synthetic Microbial Biofilms. ACS Synth Biol 1(8):345–352. doi: 10.1021/sb300031n CrossRefGoogle Scholar
  5. 5.
    Hori K, Matsumoto S (2010) Bacterial adhesion: From mechanism to control. Biochem Eng J 48(3):424–434. doi: 10.1016/j.bej.2009.11.014 CrossRefGoogle Scholar
  6. 6.
    Krishnamoorthy M, Hakobyan S, Ramstedt M, Gautrot JE (2014) Surface-Initiated Polymer Brushes in the Biomedical Field: Applications in Membrane Science, Biosensing, Cell Culture, Regenerative Medicine and Antibacterial Coatings. Chem Rev 114(21):10976–11026. doi: 10.1021/cr500252u CrossRefGoogle Scholar
  7. 7.
    Kingshott P, Wei J, Bagge-Ravn D, Gadegaard N, Gram L (2003) Covalent Attachment of Poly(ethylene glycol) to Surfaces. Critical for Reducing Bacterial Adhesion Langmuir 19(17):6912–6921. doi: 10.1021/la034032m Google Scholar
  8. 8.
    Roosjen A, van der Mei HC, Busscher HJ, Norde W (2004) Microbial Adhesion to Poly(ethylene oxide) Brushes: Influence of Polymer Chain Length and Temperature. Langmuir 20(25):10949–10955. doi: 10.1021/la048469l CrossRefGoogle Scholar
  9. 9.
    Adams N, Schubert US (2007) Poly(2-oxazolines) in biological and biomedical application contexts. Adv Drug Deliv Rev 59(15):1504–1520. doi: 10.1016/j.addr.2007.08.018 CrossRefGoogle Scholar
  10. 10.
    Pidhatika B, Rodenstein M, Chen Y, Rakhmatullina E, Mühlebach A, Acikgöz C, et al. (2012) Comparative Stability Studies of Poly(2-methyl-2-oxazoline) and Poly(ethylene glycol) Brush Coatings. Biointerphases 7(1–4):1–15. doi: 10.1007/s13758-011-0001-y CrossRefGoogle Scholar
  11. 11.
    de la Rosa V (2014) Poly(2-oxazoline)s as materials for biomedical applications. J Mater Sci Mater Med 25(5):1211–1225. doi: 10.1007/s10856-013-5034-y CrossRefGoogle Scholar
  12. 12.
    Hamley IW (2005) Nanoshells and nanotubes from block copolymers. Soft Matter 1(1):36–43. doi: 10.1039/b418226j CrossRefGoogle Scholar
  13. 13.
    Hamley IW (2003) Nanotechnology with Soft Materials. Angew Chem Int Ed 42(15):1692–1712. doi: 10.1002/anie.200200546 CrossRefGoogle Scholar
  14. 14.
    Mai Y, Eisenberg A (2012) Self-assembly of block copolymers. Chem Soc Rev 41(18):5969–5985. doi: 10.1039/c2cs35115c CrossRefGoogle Scholar
  15. 15.
    Kita-Tokarczyk K, Grumelard J, Haefele T, Meier W (2005) Block copolymer vesicles—using concepts from polymer chemistry to mimic biomembranes. Polymer 46(11):3540–3563. doi: 10.1016/j.polymer.2005.02.083 CrossRefGoogle Scholar
  16. 16.
    Zhang X, Tanner P, Graff A, Palivan CG, Meier W (2012) Mimicking the cell membrane with block copolymer membranes. J Polym Sci A Polym Chem 50(12):2293–2318. doi: 10.1002/pola.26000 CrossRefGoogle Scholar
  17. 17.
    Egli S, Schlaad H, Bruns N, Meier W (2011) Functionalization of Block Copolymer Vesicle Surfaces. Polymers 3(1):252CrossRefGoogle Scholar
  18. 18.
    Kuang L, Fernandes DA, O’Halloran M, Zheng W, Jiang Y, Ladizhansky V, et al. (2014) “Frozen” Block Copolymer Nanomembranes with Light-Driven Proton Pumping Performance. ACS Nano 8(1):537–545. doi: 10.1021/nn4059852 CrossRefGoogle Scholar
  19. 19.
    Hammer DA, Robbins GP, Haun JB, Lin JJ, Qi W, Smith LA et al. Leuko-polymersomes. Faraday Discuss 2008;139(0):129–141. doi: 10.1039/b717821b.
  20. 20.
    Levine DH, Ghoroghchian PP, Freudenberg J, Zhang G, Therien MJ, Greene MI, et al. (2008) Polymersomes: a new multi-functional tool for cancer diagnosis and therapy. Methods (San Diego, CA, United States) 46(1):25–32. doi: 10.1016/j.ymeth.2008.05.006 CrossRefGoogle Scholar
  21. 21.
    Hammer DA, Kamat NP (2012) Towards an artificial cell. FEBS Lett 586(18):2882–2890. doi: 10.1016/j.febslet.2012.07.044 CrossRefGoogle Scholar
  22. 22.
    Gonzalez-Perez A, Castelletto V, Hamley IW, Taboada P (2011) Biomimetic triblock copolymer membranes: from aqueous solutions to solid supports. Soft Matter 7(3):1129–1138. doi: 10.1039/c0sm00711k CrossRefGoogle Scholar
  23. 23.
    González-Pérez A, Stibius KB, Vissing T, Nielsen CH, Mouritsen OG (2009) Biomimetic triblock copolymer membrane arrays: a stable template for functional membrane proteins. Langmuir 25(18):10447–10450CrossRefGoogle Scholar
  24. 24.
    Vicsek T (1992) Fractal Growth Phenomena. World Scientific, SingaporeCrossRefGoogle Scholar
  25. 25.
    Jullien R (1987) Aggregation phenomena and fractal aggregates. Contemp Phys 28(5):477–493. doi: 10.1080/00107518708213736 CrossRefGoogle Scholar
  26. 26.
    Coffey W, Kalmykov YP (2006) Fractals, Diffusion, and Relaxation in Disordered Complex Systems. Wiley, New YorkGoogle Scholar
  27. 27.
    Botet R, Jullien R (1990) Fractal aggregates of particles. Phase Transit 24–26(2):691–736. doi: 10.1080/01411599008210249 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Division of Water Resources EngineeringLund UniversityLundSweden
  2. 2.Sweden Water Research ABLundSweden
  3. 3.Membrane Biophysics Group, Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark
  4. 4.Soft Matter and Molecular Biophysics Group, Department of Applied PhysicsUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations