Advertisement

Journal of Polymer Research

, 23:199 | Cite as

Preparation and characterization of hydrophilicity fibers based on 2-(dimethyamino)ethyl mathacrylate grafted polypropylene by UV- irradiation for removal of Cr(VI) and as(V)

  • Zhiyun Kong
  • Xiaoqing Wu
  • Junfu Wei
  • Huan Zhang
  • Li Cui
ORIGINAL PAPER

Abstract

The hydrophilic fibers based on 2-(dimethylamino)ethyl methacrylate (DMAEMA) which could remove Cr(VI) ions rapidly were prepared by UV-irradiation induced grafting of DMAEMA through pre-coating photoinitiator on the fibers and modifying with bromoethane(BE). The FTIR, FESEM, XPS, TG-DTG and contact angle spectra manifested that DMAEMA was grafted onto the surface of PP fibers and subsequently was quaternized. The maximum grafting degree (22.9 %) and exchange capacity of DMAEMA (1.2 mmol g−1) was obtained when PP fibers was immersed in BP concentration of 0.3 % for 4 h, irradiated with the DMAEMA concentration of 100 % and irradiation time of 20 min, and then was modified with BE. The modified fibers of PP-g-DMAEMA with bromoethane were proved to remove Cr(VI) and As(V) with removal rate of 97.3 % and 96.2 % within 10 min, respectively. The prepared fibers have potential application for the removal of Cr(VI) and As(V) from wastewater highly and rapidly.

Keywords

Fiber DMAEMA Cr(VI) As(V) Grafting reaction Quaternization 

Notes

Acknowledgments

This research was supported by the National High Technology Research and Development Program of China (863 Program) (2013AA065601), the key technologies R & D program of Tianjin (13ZDSF00100), the National Natural Science Foundation of China (41301542), Financial Support from Tianjin Science Technology Research funds of China(12JCYBJC3200) and National Natural Science Foundation ofChina(21504063).

References

  1. 1.
    Yusof AM, Malek NANN (2009) Removal of Cr(VI) and as(V) from aqueous solutions by HDTMA-modified zeolite Y. J Hazard Mater 162:1019–1024. doi: 10.1016/j.jhazmat.2008.05.134 CrossRefGoogle Scholar
  2. 2.
    Liang P, Liu R (2007) Speciation analysis of inorganic arsenic in water samples by immobilized nanometer titanium dioxide separation and graphite furnace atomic absorption spectrometric determination. Anal Chim Acta 602:32–36. doi: 10.1016/j.aca.2007.09.012 CrossRefGoogle Scholar
  3. 3.
    Aryal M, Ziagova M, Liakopoulou-Kyriakides M (2011) Comparison of Cr (VI) and as (V) removal in single and binary mixtures with Fe (III)-treated staphylococcus xylosus biomass: thermodynamic studies. Chem Eng J 169:100–106CrossRefGoogle Scholar
  4. 4.
    Ebrahim S, Shokry A, Ibrahim H, Soliman M (2016) Polyaniline/akaganéite nanocomposite for detoxification of noxious Cr(VI) from aquatic environment. J Polym Res 23:79. doi: 10.1007/s10965-016-0977-6
  5. 5.
    Anirudhan TS, Rijith S, Das Bringle C (2009) Iron(III) complex of an amino-functionalized poly(acrylamide)-grafted lignocellulosic residue as a potential adsorbent for the removal of chromium(VI) from water and industry effluents. J Polym Res 17:289–299. doi: 10.1007/s10965-009-9316-5 CrossRefGoogle Scholar
  6. 6.
    Venditti F, Cuomo F, Ceglie A, Ambrosone L, Lopez F (2010) Effects of sulfate ions and slightly acidic pH conditions on Cr(VI) adsorption onto silica gelatin composite. J Hazard Mater 173:552–557. doi: 10.1016/j.jhazmat.2009.08.121 CrossRefGoogle Scholar
  7. 7.
    Maksin DD, Nastasović AB, Milutinović-Nikolić AD, Suručić LT, Sandić ZP, Hercigonja RV, Onjia AE (2012) Equilibrium and kinetics study on hexavalent chromium adsorption onto diethylene triamine grafted glycidyl methacrylate based copolymers. J Hazard Mater 209–210:99–110. doi: 10.1016/j.jhazmat.2011.12.079
  8. 8.
    Goswami A, Raul P, Purkait M (2012) Arsenic adsorption using copper (II) oxide nanoparticles. Chem Eng Res Des 90:1387–1396CrossRefGoogle Scholar
  9. 9.
    Cho D, Chon C, Kim Y, Jeon B, Schwartz FW, Lee ES, Song H (2011) Adsorption of nitrate and Cr(VI) by cationic polymer-modified granular activated carbon. Chem Eng J 175:298–305. doi: 10.1016/j.cej.2011.09.108 CrossRefGoogle Scholar
  10. 10.
    Edebali S, Pehlivan E (2010) Evaluation of Amberlite IRA96 and Dowex 1 × 8 ion-exchange resins for the removal of Cr(VI) from aqueous solution. Chem Eng J 161:161–166. doi: 10.1016/j.cej.2010.04.059 CrossRefGoogle Scholar
  11. 11.
    Elwakeel K (2014) Removal of arsenate from aqueous media by magnetic chitosan resin immobilized with molybdate oxoanions. Int J Environ Sci Technol 11:1051–1062CrossRefGoogle Scholar
  12. 12.
    Cheng Q, Li C, Xu L, Li J, Zhai M (2011) Adsorption of Cr(VI) ions using the amphiphilic gels based on 2-(dimethylamino)ethyl methacrylate modified with 1-bromoalkanes. Chem Eng J 173:42–48. doi: 10.1016/j.cej.2011.07.033 CrossRefGoogle Scholar
  13. 13.
    Li L, Wang Z, Ma P, Bai H, Dong W, Chen M (2015) Preparation of polyvinyl alcohol/chitosan hydrogel compounded with graphene oxide to enhance the adsorption properties for Cu(II) in aqueous solution. J Polym Res 22:150. doi: 10.1007/s10965-015-0794-3
  14. 14.
    Fei C, Huang D, Feng S (2012) Adsorption behavior of amphoteric double-network hydrogel based on poly(acrylic acid) and silica gel. J Polym Res 19:9929. doi: 10.1007/s10965-012-9929-y
  15. 15.
    Arenas LT, Lima EC, dos Santos AA, Vaghetti JCP, Costa TMH, Benvenutti EV (2007) Use of statistical design of experiments to evaluate the sorption capacity of 1,4-diazoniabicycle[2.2.2]octane/silica chloride for Cr(VI) adsorption. Colloids Surf A Physicochem Eng Asp 297:240–248. doi: 10.1016/j.colsurfa.2006.10.050 CrossRefGoogle Scholar
  16. 16.
    Anirudhan TS, Nima J, Divya PL (2013) Adsorption of chromium(VI) from aqueous solutions by glycidylmethacrylate-grafted-densified cellulose with quaternary ammonium groups. Appl Surf Sci 279:441–449. doi: 10.1016/j.apsusc.2013.04.134 CrossRefGoogle Scholar
  17. 17.
    Hu J, Lo I, Chen G (2007) Comparative study of various magnetic nanoparticles for Cr (VI) removal. Sep Purif Technol 56:249–256CrossRefGoogle Scholar
  18. 18.
    Li R, Li Q, Gao S, Shang JK (2012) Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles: part a. Adsorption capacity and mechanism. Chem Eng J 185:127–135CrossRefGoogle Scholar
  19. 19.
    Chen R, Zhi C, Yang H, Bando Y, Zhang Z, Sugiur N, Golberg D (2011) Arsenic (V) adsorption on Fe 3 O 4 nanoparticle-coated boron nitride nanotubes. J Colloid Interface Sci 359:261–268CrossRefGoogle Scholar
  20. 20.
    Wang L, Liu W, Wang T, Ni J (2013) Highly efficient adsorption of Cr(VI) from aqueous solutions by amino-functionalized titanate nanotubes. Chem Eng J 225:153–163. doi: 10.1016/j.cej.2013.03.081 CrossRefGoogle Scholar
  21. 21.
    Sankararamakrishnan N, Dixit A, Iyengar L, Sanghi R (2006) Removal of hexavalent chromium using a novel cross linked xanthated chitosan. Bioresour Technol 97:2377–2382. doi: 10.1016/j.biortech.2005.10.024 CrossRefGoogle Scholar
  22. 22.
    Seyed Dorraji MS, Mirmohseni A, Tasselli F, Criscuoli A, Carraro M, Gross S, Figoli A (2014) Preparation, characterization and application of iron (III)-loaded chitosan hollow fiber membranes as a new bio-based as (V) sorbent. J Polym Res 21:399. doi: 10.1007/s10965-014-0399-2
  23. 23.
    Huang J, Zhang X, Bai L, Yuan S (2012) Polyphenylene sulfide based anion exchange fiber: synthesis, characterization and adsorption of Cr(VI. J Environ Sci 24:1433–1438. doi: 10.1016/s1001-0742(11)60948-0 CrossRefGoogle Scholar
  24. 24.
    Wei JF, Wang ZP, Zhang J, YY W, Zhang ZP, Xiong CH (2005) The preparation and the application of grafted polytetrafluoroethylene fiber as a cation exchanger for adsorption of heavy metals. React Funct Polym 65:127–134. doi: 10.1016/j.reactfunctpolym.2005.01.009 CrossRefGoogle Scholar
  25. 25.
    Zhang Q, Zhang S, Chen S, Li P, Qin T, Yuan S (2008) Preparation and characterization of a strong basic anion exchanger by radiation-induced grafting of styrene onto poly(tetrafluoroethylene) fiber. J Colloid Interface Sci 322:421–428. doi: 10.1016/j.jcis.2008.03.049 CrossRefGoogle Scholar
  26. 26.
    Xiang Y, Shen J, Wang Y, Liu F, Xue L (2015) A pH-responsive PVDF membrane with superwetting properties for the separation of oil and water. RSC Adv 5:23530–23539CrossRefGoogle Scholar
  27. 27.
    Chen Y, Mo F, Chen S, Yang Y, Chen S, Zhuo H, Liu J (2015) A shape memory copolymer based on 2-(dimethylamino) ethyl methacrylate and methyl allyl polyethenoxy ether for potential biological applications. RSC Adv 5:44435–44446CrossRefGoogle Scholar
  28. 28.
    Zhu L, Zhu LP, Zhao YF, Zhu BK, Xu YY (2014) Anti-fouling and anti-bacterial polyethersulfone membranes quaternized from the additive of poly (2-dimethylamino ethyl methacrylate) grafted SiO 2 nanoparticles. J Mater Chem A 2:15566–15574CrossRefGoogle Scholar
  29. 29.
    Chen J, Wu Z, Yang L, Zhang Q, Sun J, Shi Y, Xia L, Kaetsu I (2007) Grafting copolymerization of N, N-dimethyacrylaminoethylmethacrylate (DMAEMA) onto preirradiated polypropylene films. Radiat Phys Chem 76:1367–1370CrossRefGoogle Scholar
  30. 30.
    Yu Z, Kang E, Neoh K (2002) Electroless plating of copper on polyimide films modified by surface grafting of tertiary and quaternary amines polymers. Polymer 43:4137–4146CrossRefGoogle Scholar
  31. 31.
    Singh DK, Ray AR (1997) Radiation-induced grafting of N, N′-dimethylaminoethylmethacrylate onto chitosan films. J Appl Polym Sci 66:869–877CrossRefGoogle Scholar
  32. 32.
    Jiang M, Wang J, Li L, Pan K, Cao B (2013) Poly(N,N-dimethylaminoethyl methacrylate) modification of a regenerated cellulose membrane using ATRP method for copper(ii) ion removal. RSC Adv 3:20625. doi: 10.1039/c3ra44126a
  33. 33.
    Li C, Zhang Y, Peng J, Wu H, Li J, Zhai M (2012) Adsorption of Cr(VI) using cellulose microsphere-based adsorbent prepared by radiation-induced grafting. Radiat Phys Chem 81:967–970. doi: 10.1016/j.radphyschem.2011.11.003 CrossRefGoogle Scholar
  34. 34.
    Kong Z-y, J-f W, Y-h L, N-n L, Zhang H, Zhang Y, Cui L (2014) Rapid removal of Cr(VI) ions using quaternary ammonium fibers functioned by 2-(dimethylamino)ethyl methacrylate and modified with 1-bromoalkanes. Chem Eng J 254:365–373. doi: 10.1016/j.cej.2014.05.128 CrossRefGoogle Scholar
  35. 35.
    Deng J, Wang L, Liu L, Yang W (2009) Developments and new applications of UV-induced surface graft polymerizations. Prog Polym Sci 34:156–193CrossRefGoogle Scholar
  36. 36.
    Wójcik G, Neagu V, Bunia I (2011) Sorption studies of chromium(VI) onto new ion exchanger with tertiary amine, quaternary ammonium and ketone groups. J Hazard Mater 190:544–552. doi: 10.1016/j.jhazmat.2011.03.080 CrossRefGoogle Scholar
  37. 37.
    Ma H, Davis RH, Bowman CN (2000) A novel sequential photoinduced living graft polymerization. Macromolecules 33:331–335CrossRefGoogle Scholar
  38. 38.
    Jin H, An Q, Zhao Q, Qian J, Zhu M (2010) Pervaporation dehydration of ethanol by using polyelectrolyte complex membranes based on poly (N-ethyl-4-vinylpyridinium bromide) and sodium carboxymethyl cellulose. J Membr Sci 347:183–192. doi: 10.1016/j.memsci.2009.10.023 CrossRefGoogle Scholar
  39. 39.
    Qiu J, Wang Z, Li H, Xu L, Peng J, Zhai M, Yang C, Li J, Wei G (2009) Adsorption of Cr(VI) using silica-based adsorbent prepared by radiation-induced grafting. J Hazard Mater 166:270–276. doi: 10.1016/j.jhazmat.2008.11.053 CrossRefGoogle Scholar
  40. 40.
    Tan K, Woon L, Wong H, Kang E, Neoh K (1993) Surface modification of plasma-pretreated poly (tetrafluoroethylene) films by graft copolymerization. Macromolecules 26:2832–2836CrossRefGoogle Scholar
  41. 41.
    Yu H, Gan LH, Hu X, Gan YY (2007) A pH-sensitive double [60]fullerene-end-capped polymers via ATRP: synthesis and aggregation behavior. Polymer 48:2312–2321. doi: 10.1016/j.polymer.2007.02.050 CrossRefGoogle Scholar
  42. 42.
    Zhao L, Sun J, Zhao Y, Xu L, Zhai M (2011) Removal of hazardous metal ions from wastewater by radiation synthesized silica-graft-dimethylaminoethyl methacrylate adsorbent. Chem Eng J 170:162–169. doi: 10.1016/j.cej.2011.03.047 CrossRefGoogle Scholar
  43. 43.
    Taleb MFA, Mahmoud GA, Elsigeny SM, Hegazy E-SA (2008) Adsorption and desorption of phosphate and nitrate ions using quaternary (polypropylene-g-N, N-dimethylamino ethylmethacrylate) graft copolymer. J Hazard Mater 159:372–379CrossRefGoogle Scholar
  44. 44.
    Yue W-W, Li H-J, Xiang T, Qin H, Sun S-D, Zhao C-S (2013) Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility. J Membr Sci 446:79–91CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Zhiyun Kong
    • 1
    • 2
  • Xiaoqing Wu
    • 1
    • 3
  • Junfu Wei
    • 1
    • 4
  • Huan Zhang
    • 1
    • 4
  • Li Cui
    • 1
    • 4
  1. 1.State Key Laboratory of Hollow Fiber Membrane Materials and ProcessesTianjin Polytechnic UniversityTianjinChina
  2. 2.School of Material Science and EngineeringTianjin Polytechnic UniversityTianjinChina
  3. 3.Key Laboratory of Advanced Textile Composite Materials of Ministry of EducationTianjin Polytechnic UniversityTianjinChina
  4. 4.School of Environmental and Chemical EngineeringTianjin Polytechnic UniversityTianjinChina

Personalised recommendations