Journal of Polymer Research

, 23:183 | Cite as

Atomic layer deposition of TiO2 film on a polyethersulfone membrane: separation applications

  • Javed Alam
  • Mansour Alhoshan
  • Lawrence Arockiasamy Dass
  • Arun Kumar Shukla
  • M. R. Muthumareeswaran
  • Mukhtar Hussain
  • Abdullah S. Aldwayyan
Original Paper


In the current study, a titanium dioxide (TiO2) nanostructured film was grown on a polyethersulfone (PES) substrate membrane using atomic layer deposition (ALD) with the aim of tailoring the membrane surface properties to be suitable for desalination applications. Scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle (CA) and zeta potential measurements and a tensile meter were used to characterize the membrane morphology, surface properties and mechanical stability, respectively. In addition, the separation performance of all of the prepared membranes was evaluated in terms of water flux and salt rejection. The results showed that the TiO2 nanostructured film deposited-PES membrane exhibited excellent performance with a rejection of ≥90 % at room temperature for NaCl, which is four times greater than that of a PES membrane alone. It is interesting to note that the deposition of the TiO2 film resulted in a marginal decrease in the water flux from 60 ± 2 Lm−2 h−1 to 47 ± 2 Lm−2 h−1 of the resulting membrane due to the TiO2 film’s nanometre-scale thickness. Moreover, the ALD of the TiO2 film enhanced the mechanical strength of the membrane as it tightly wrapped the skeleton of the membrane.


Polyethersulfone Nanostructured film Atomic layer deposition Separation applications Mechanical strength 



The authors are thankful to the financial support from the King Abdullah Institute for Nanotechnology, Deanship of Scientific Research, King Saud University; Riyadh, Saudi Arabia.


  1. 1.
    Zhao C, Xue J, Ran F, Sun S (2013) Modification of polyethersulfone membranes - a review of methods. Prog Mater Sci 58:76–150CrossRefGoogle Scholar
  2. 2.
    Antón E, Álvarez JR, Palacio L, et al. (2015) Ageing of polyethersulfone ultrafiltration membranes under long-term exposures to alkaline and acidic cleaning solutions. Chem Eng Sci 134:178–195CrossRefGoogle Scholar
  3. 3.
    Alam J, Dass LA, Alhoshan MS, et al. (2011) Development of polyaniline-modified polysulfone nanocomposite membrane. Appl Water Sci 2:37–46CrossRefGoogle Scholar
  4. 4.
    Maheswari P, Barghava P, Mohan D (2013) Preparation, morphology, hydrophilicity and performance of poly (ether-ether-sulfone) incorporated cellulose acetate ultrafiltration membranes. J Polym Res 20:–74. doi: 10.1007/s10965-013-0074-z
  5. 5.
    Nady N, Franssen MCR, Zuilhof H, et al. (2011) Modification methods for poly(arylsulfone) membranes: a mini-review focusing on surface modification. Desalination 275:1–9CrossRefGoogle Scholar
  6. 6.
    Rahimpour A, Madaeni SS (2010) Improvement of performance and surface properties of nano-porous polyethersulfone (PES) membrane using hydrophilic monomers as additives in the casting solution. J Memb Sci 360:371–379CrossRefGoogle Scholar
  7. 7.
    Rahimpour A, Madaeni SS, Mansourpanah Y (2010) Nano-porous polyethersulfone (PES) membranes modified by acrylic acid (AA) and 2-hydroxyethylmethacrylate (HEMA) as additives in the gelation media. J Memb Sci 364:380–388CrossRefGoogle Scholar
  8. 8.
    Qin H, Sun C, He C, et al. (2014) High efficient protocol for the modification of polyethersulfone membranes with anticoagulant and antifouling properties via in situ cross-linked copolymerization. J Memb Sci 468:172–183CrossRefGoogle Scholar
  9. 9.
    Wavhal DS, Fisher ER (2002) Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization. J Memb Sci 209:255–269CrossRefGoogle Scholar
  10. 10.
    Amirilargani M, Mohammadi T (2009) Effects of PEG on morphology and permeation properties of polyethersulfone membranes. Sep Sci Technol 44:3854–3875CrossRefGoogle Scholar
  11. 11.
    Yin J, Deng B (2014) Polymer-matrix nanocomposite membranes for water treatment. J Memb Sci 479:256–275CrossRefGoogle Scholar
  12. 12.
    Amirilargani M, Sabetghadam A, Mohammadi T (2012) Polyethersulfone/polyacrylonitrile blend ultrafiltration membranes with different molecular weight of polyethylene glycol: preparation, morphology and antifouling properties. Polym Adv Technol 23:398–407CrossRefGoogle Scholar
  13. 13.
    Lau WJ, Ismail AF, Misdan N, Kassim MA (2012) A recent progress in thin film composite membrane: a review. Desalination 287:190–199CrossRefGoogle Scholar
  14. 14.
    Zou H, Jin Y, Yang J, et al. (2010) Synthesis and characterization of thin film composite reverse osmosis membranes via novel interfacial polymerization approach. Sep Purif Technol 72:256–262CrossRefGoogle Scholar
  15. 15.
    Soroush A, Barzin J, Barikani M, Fathizadeh M (2012) Interfacially polymerized polyamide thin film composite membranes: preparation, characterization and performance evaluation. Desalination 287:310–316CrossRefGoogle Scholar
  16. 16.
    Lu P, Liang S, Qiu L, et al. (2015) Thin film nanocomposite forward osmosis membranes based on layered double hydroxide nanoparticles blended substrates. J Memb Sci 504:196–205CrossRefGoogle Scholar
  17. 17.
    Chae H-R, Lee J, Lee C-H, et al. (2015) Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance. J Memb Sci 483:128–135CrossRefGoogle Scholar
  18. 18.
    Dong H, Wu L, Zhang L, et al. (2015) Clay nanosheets as charged filler materials for high-performance and fouling-resistant thin film nanocomposite membranes. J Memb Sci 494:92–103CrossRefGoogle Scholar
  19. 19.
    Ma N, Wei J, Liao R, Tang CY (2012) Zeolite-polyamide thin film nanocomposite membranes: towards enhanced performance for forward osmosis. J Memb Sci 405–406:149–157.Google Scholar
  20. 20.
    Yin J, Zhu G, Deng B (2015) Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Des 379:93–101CrossRefGoogle Scholar
  21. 21.
    Li X, Cao Y, Yu H, et al. (2014) A novel composite nanofiltration membrane prepared with PHGH and TMC by interfacial polymerization. J Memb Sci 466:82–91CrossRefGoogle Scholar
  22. 22.
    Yung L, Ma H, Wang X, et al. (2010) Fabrication of thin-film nanofibrous composite membranes by interfacial polymerization using ionic liquids as additives. J Memb Sci 365:52–58CrossRefGoogle Scholar
  23. 23.
    Peyki A, Rahimpour A, Jahanshahi M (2014) Preparation and characterization of thin film composite reverse osmosis membranes incorporated with hydrophilic SiO2 nanoparticles. Desalination 368:152–158CrossRefGoogle Scholar
  24. 24.
    Jeong BH, Hoek EMV, Yan Y, et al. (2007) Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J Memb Sci 294:1–7CrossRefGoogle Scholar
  25. 25.
    Lau WJ, Gray S, Matsuura T, et al. (2015) A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches. Water Res 80:306–324CrossRefGoogle Scholar
  26. 26.
    Duan J, Pan Y, Pacheco F, et al. (2015) High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8. J Memb Sci 476:303–310CrossRefGoogle Scholar
  27. 27.
    Baroña GNB, Lim J, Choi M, Jung B (2013) Interfacial polymerization of polyamide-aluminosilicate SWNT nanocomposite membranes for reverse osmosis. Desalination 325:138–147CrossRefGoogle Scholar
  28. 28.
    Johnson RW, Hultqvist A, Bent SF (2014) A brief review of atomic layer deposition: from fundamentals to applications. Mater Today 17:236–246CrossRefGoogle Scholar
  29. 29.
    Kobayashi NP, Donley CL, Wang S-Y, Williams RS (2007) Atomic layer deposition of aluminum oxide on hydrophobic and hydrophilic surfaces. J Cryst Growth 299:218–222CrossRefGoogle Scholar
  30. 30.
    Wilson CA, Grubbs RK, George SM (2005) Nucleation and growth during Al 2 O 3 atomic layer deposition on polymers. Chem Mater 17:5625–5634CrossRefGoogle Scholar
  31. 31.
    Kemell M, Färm E, Ritala M, Leskelä M (2008) Surface modification of thermoplastics by atomic layer deposition of Al2O3 and TiO2 thin films. Eur Polym J 44:3564–3570CrossRefGoogle Scholar
  32. 32.
    Adamczyk, NM, Dameron, AA, George, SM (2008) Molecular Layer Deposition of Poly ( p -phenylene terephthalamide ) Films Using Terephthaloyl Chloride and p -Phenylenediamine. 2081–2089Google Scholar
  33. 33.
    Ahmadzada T, McKenzie DR, James NL, et al. (2015) Atomic layer deposition of Al2O3 and Al2O3/TiO2 barrier coatings to reduce the water vapour permeability of polyetheretherketone. Thin Solid Films 591:131–136CrossRefGoogle Scholar
  34. 34.
    Abendroth B, Moebus T, Rentrop S, et al. (2013) Atomic layer deposition of TiO2 from tetrakis(dimethylamino) titanium and H2O. Thin Solid Films 545:176–182CrossRefGoogle Scholar
  35. 35.
    Xu Q, Yang Y, Wang X, et al. (2012) Atomic layer deposition of alumina on porous polytetrafluoroethylene membranes for enhanced hydrophilicity and separation performances. J Memb Sci 415–416:435–443CrossRefGoogle Scholar
  36. 36.
    Li F, Li L, Liao X, Wang Y (2011) Precise pore size tuning and surface modifications of polymeric membranes using the atomic layer deposition technique. J Memb Sci 385–386:1–9.Google Scholar
  37. 37.
    Wang Q, Wang X, Wang Z, et al. (2013) PVDF membranes with simultaneously enhanced permeability and selectivity by breaking the tradeoff effect via atomic layer deposition of TiO2. J Memb Sci 442:57–64CrossRefGoogle Scholar
  38. 38.
    Li F, Yang Y, Fan Y, et al (2012) Modification of ceramic membranes for pore structure tailoring: the atomic layer deposition route. J Memb Sci 397–398:17–23. SiO2 Google Scholar
  39. 39.
    Cameron MA, Gartland IP, Smith JA, et al. (2000) Atomic layer deposition of SiO2 and TiO2 in alumina tubular membranes: Pore reduction and effect of surface species on gas transport. Langmuir 16:7435–7444CrossRefGoogle Scholar
  40. 40.
    Narayan RJ, Adiga SP, Pellin MJ, et al. (2010) Atomic layer deposition of nanoporous biomaterials. Mater Today 13:60–64CrossRefGoogle Scholar
  41. 41.
    Ozaydin-Ince G, Matin A, Khan Z, et al. (2013) Surface modification of reverse osmosis desalination membranes by thin-film coatings deposited by initiated chemical vapor deposition. Thin Solid Films 539:181–187CrossRefGoogle Scholar
  42. 42.
    Hirvikorpi T, Vähä Nissi M, Mustonen T, et al. (2010) Atomic layer deposited aluminum oxide barrier coatings for packaging materials. Thin Solid Films 518:2654–2658CrossRefGoogle Scholar
  43. 43.
    Parsons GN, Atanasov SE, Dandley EC, et al. (2013) Mechanisms and reactions during atomic layer deposition on polymers. Coord Chem Rev 257:3323–3331CrossRefGoogle Scholar
  44. 44.
    Bott R (2011) Applications of titanium dioxide photocatalysis to construction materials. Igarss 2014:1–5Google Scholar
  45. 45.
    Hashimoto K, Irie H, Fujishima A (2007) A historical overview and future prospects. AAPPS Bull 17:12–28Google Scholar
  46. 46.
    Strathmann H, Kock K, Amar P, Baker RW (1975) The formation mechanism of asymmetric membranes. Desalination 16:179–203CrossRefGoogle Scholar
  47. 47.
    Sbaï M, Fievet P, Szymczyk A, et al. (2003) Streaming potential, electroviscous effect, pore conductivity and membrane potential for the determination of the surface potential of a ceramic ultrafiltration membrane. J Memb Sci 215:1–9CrossRefGoogle Scholar
  48. 48.
    Zhu L, Gu Q, Sun P, et al (2013) Characterization of the mobility and reactivity of water molecules on TiO2 nanoparticles by 1H solid-state nuclear magnetic resonance. ACS Appl Mater Interfaces 5–20:10352–10356Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.King Abdullah Institute for NanotechnologyKing Saud UniversityRiyadhKingdom of Saudi Arabia
  2. 2.Chemical Engineering Department, College of EngineeringKing Saud UniversityRiyadhKingdom of Saudi Arabia
  3. 3.Department of Physics & Astronomy, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations