Preparation of damping structural integration materials via the formation of nanostructure in triblock copolymer modified epoxy resins

  • Zhengguang Heng
  • Rui Li
  • Yang Chen
  • Huawei Zou
  • Mei Liang


Amphiphilic triblock copolymer Poly(ε-caprolactone)-block-polydimethylsiloxane-block-poly(ε-caprolactone) (PCL-b-PDMS-b-PCL, LDL) was synthesized via the ring-opening polymerization of ε-caprolactone in the presence of hydroxyl-terminated polydimethylsiloxane (HTPDMS) and was utilized to modify epoxy. The tensile strength and elongation at break were simultaneously enhanced when the triblock copolymer was incorporated. With increasing the concentration of the triblock copolymer, the damping temperature range (tanδ >0.25) was broadened from 21 °C to 34.5 °C. Meanwhile, the storage modulus of the composites and the values of tanδ had no significant decrease. When the concentration of the triblock copolymer was 20 wt%, the value of KIC attained 1.68 MN/m3/2, which was 1.56 times that of the neat epoxy (1.08 MN/m3/2). Besides, the characterization of hydrophobic and hydrophilic performance indicated that the incorporation of the triblock copolymer made epoxy resins transformed from hydrophilic to hydrophobic. It is expected that damping composites obtained by this method may be used as damping structural integration materials in future.


Triblock copolymer Epoxy Mechanical properties Damping property Surface property 



The authors would like to thank the National Natural Science Foundation of China (51273118), the Science & Technology Pillar Program of Sichuan (2013FZ0006) and the Fundamental Research Funds for the Central Universities of China (2015SCU11008) for financial support, and the Analytical and Testing Center of Sichuan University for providing SEM measurements.


  1. 1.
    Wang T et al. (2010) Damping analysis of polyurethane/epoxy graft interpenetrating polymer network composites filled with short carbon fiber and micro hollow glass bead. Mater. Des. 31(8):3810–3815CrossRefGoogle Scholar
  2. 2.
    Remillat C (2007) Damping mechanism of polymers filled with elastic particles. Mech. Mater. 39(6):525–537CrossRefGoogle Scholar
  3. 3.
    Kishi H et al. (2007) Carboxyl-terminated butadiene acrylonitrile rubber/epoxy polymer alloys as damping adhesives and energy absorbable resins. J. Appl. Polym. Sci. 105(4):1817–1824CrossRefGoogle Scholar
  4. 4.
    Heng Z et al. (2015) Silicone modified epoxy resins with good toughness, damping properties and high thermal residual weight. J. Polym. Res. 22(11):1–7CrossRefGoogle Scholar
  5. 5.
    Hsieh K et al. (2001) Graft interpenetrating polymer networks of urethane-modified bismaleimide and epoxy (I): mechanical behavior and morphology. Polymer 42(6):2491–2500CrossRefGoogle Scholar
  6. 6.
    Merlin DL, Sivasankar B (2009) Synthesis and characterization of semi-interpenetrating polymer networks using biocompatible polyurethane and acrylamide monomer. Eur. Polym. J. 45(1):165–170CrossRefGoogle Scholar
  7. 7.
    Chen S, Wang Q, Wang T (2011) Dynamic mechanical properties of polysiloxane-modified, castor oil-based polyurethane/epoxy interpenetrating polymer network composites. High Performance Polymers 23(5):345–351. doi: 10.1177/0954008311405869 CrossRefGoogle Scholar
  8. 8.
    Chen S et al. (2010) Dynamic mechanical properties of castor oil-based polyurethane/epoxy graft interpenetrating polymer network composites. J. Appl. Polym. Sci. 118(2):1144–1151CrossRefGoogle Scholar
  9. 9.
    Hanoosh WS, Abdelrazaq EM (2009) Polydimethyl siloxane toughened epoxy resins: tensile strength and dynamic mechanical analysis. Malays Polym J 4(2):52–61Google Scholar
  10. 10.
    Chen S, Wang Q, Wang T (2011) Mechanical, damping, and thermal properties of calcium sulfate whisker-filled castor oil-based polyurethane/epoxy IPN composites. J. Reinf. Plast. Compos. 30(6):509–515CrossRefGoogle Scholar
  11. 11.
    Kishi H et al. (2004) Damping properties of thermoplastic-elastomer interleaved carbon fiber-reinforced epoxy composites. Compos. Sci. Technol. 64(16):2517–2523CrossRefGoogle Scholar
  12. 12.
    Trakulsujaritchok T, Hourston D (2006) Damping characteristics and mechanical properties of silica filled PUR/PEMA simultaneous interpenetrating polymer networks. Eur. Polym. J. 42(11):2968–2976CrossRefGoogle Scholar
  13. 13.
    Zheng J, Ozisik R, Siegel RW (2005) Disruption of self-assembly and altered mechanical behavior in polyurethane/zinc oxide nanocomposites. Polymer 46(24):10873–10882CrossRefGoogle Scholar
  14. 14.
    Robinson M, Kosmatka J (2005) Embedding viscoelastic damping materials in low-cost VARTM composite structures. In Smart Structures and Materials. International Society for Optics and Photonics, BellinghamCrossRefGoogle Scholar
  15. 15.
    Wu J, Thio YS, Bates FS (2005) Structure and properties of PBO–PEO diblock copolymer modified epoxy. J. Polym. Sci. B Polym. Phys. 43(15):1950–1965CrossRefGoogle Scholar
  16. 16.
    Fan W, Zheng S (2008) Reaction-induced microphase separation in thermosetting blends of epoxy resin with poly (methyl methacrylate)-block-polystyrene block copolymers: effect of topologies of block copolymers on morphological structures. Polymer 49(13):3157–3167CrossRefGoogle Scholar
  17. 17.
    Heng Z et al. (2015) Simultaneously enhanced tensile strength and fracture toughness of epoxy resins by a poly (ethylene oxide)-block-carboxyl terminated butadiene-acrylonitrile rubber dilock copolymer. RSC Adv. 5(53):42362–42368CrossRefGoogle Scholar
  18. 18.
    Mijovic J et al. (2000) Dynamics and morphology in nanostructured thermoset network/block copolymer blends during network formation. Macromolecules 33(14):5235–5244CrossRefGoogle Scholar
  19. 19.
    Gong W et al. (2008) Poly (hydroxyether of bisphenol A)-block-polydimethylsiloxane alternating block copolymer and its nanostructured blends with epoxy resin. Polymer 49(15):3318–3326CrossRefGoogle Scholar
  20. 20.
    Guo Q et al. (2006) Nanostructured thermoset epoxy resin templated by an amphiphilic poly (ethylene oxide)-block-poly (dimethylsiloxane) diblock copolymer. J. Polym. Sci. B Polym. Phys. 44(21):3042–3052CrossRefGoogle Scholar
  21. 21.
    Könczöl L et al. (1994) Ultimate properties of epoxy resins modified with a polysiloxane–polycaprolactone block copolymer. J. Appl. Polym. Sci. 54(6):815–826CrossRefGoogle Scholar
  22. 22.
    Ni Y, Zheng S (2005) Influence of intramolecular specific interactions on phase behavior of epoxy resin and poly (ε-caprolactone) blends cured with aromatic amines. Polymer 46(15):5828–5839CrossRefGoogle Scholar
  23. 23.
    Yin M, Zheng S (2005) Ternary Thermosetting Blends of Epoxy Resin, Poly (ethylene oxide) and Poly (ε-caprolactone). Macromol. Chem. Phys. 206(9):929–937CrossRefGoogle Scholar
  24. 24.
    Hillmyer MA et al. (1997) Self-assembly and polymerization of epoxy resin-amphiphilic block copolymer nanocomposites. J. Am. Chem. Soc. 119(11):2749–2750CrossRefGoogle Scholar
  25. 25.
    Lipic PM, Bates FS, Hillmyer MA (1998) Nanostructured thermosets from self-assembled amphiphilic block copolymer/epoxy resin mixtures. J. Am. Chem. Soc. 120(35):8963–8970CrossRefGoogle Scholar
  26. 26.
    Sinturel C et al. (2007) Nanostructured polymers obtained from polyethylene-block-poly (ethylene oxide) block copolymer in unsaturated polyester. Macromolecules 40(7):2532–2538CrossRefGoogle Scholar
  27. 27.
    Maiez-Tribut S et al. (2007) Nanostructured epoxies based on the self-assembly of block copolymers: a new miscible block that can be tailored to different epoxy formulations. Macromolecules 40(4):1268–1273CrossRefGoogle Scholar
  28. 28.
    Dean JM et al. (2003) Mechanical properties of block copolymer vesicle and micelle modified epoxies. J. Polym. Sci. B Polym. Phys. 41(20):2444–2456CrossRefGoogle Scholar
  29. 29.
    Meng F et al. (2006) Formation of ordered nanostructures in epoxy thermosets: a mechanism of reaction-induced microphase separation. Macromolecules 39(15):5072–5080CrossRefGoogle Scholar
  30. 30.
    Serrano E et al. (2006) Nanostructured thermosetting systems by modification with epoxidized styrene-butadiene star block copolymers. Effect of epoxidation degree. Macromolecules 39(6):2254–2261CrossRefGoogle Scholar
  31. 31.
    Meng F, Xu Z, Zheng S (2008) Microphase separation in thermosetting blends of epoxy resin and poly (ε-caprolactone)-block-polystyrene block copolymers. Macromolecules 41(4):1411–1420CrossRefGoogle Scholar
  32. 32.
    Yang G, Fu S-Y, Yang J-P (2007) Preparation and mechanical properties of modified epoxy resins with flexible diamines. Polymer 48(1):302–310CrossRefGoogle Scholar
  33. 33.
    Fu S-Y et al. (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. Part B 39(6):933–961CrossRefGoogle Scholar
  34. 34.
    Ruiz-Pérez L et al. (2008) Toughening by nanostructure. Polymer 49(21):4475–4488CrossRefGoogle Scholar
  35. 35.
    Dean JM et al. (2003) Nanostructure toughened epoxy resins. Macromolecules 36(25):9267–9270CrossRefGoogle Scholar
  36. 36.
    Garg AC, Mai Y-W (1988) Failure mechanisms in toughened epoxy resins—A review. Compos. Sci. Technol. 31(3):179–223CrossRefGoogle Scholar
  37. 37.
    Bagheri R, Pearson RA (1996) Role of particle cavitation in rubber-toughened epoxies: 1. Microvoid toughening Polymer 37(20):4529–4538Google Scholar
  38. 38.
    Bagheri R, Pearson RA (2000) Role of particle cavitation in rubber-toughened epoxies: II. Inter-particle distance Polymer 41(1):269–276Google Scholar
  39. 39.
    Pearson R, Yee A (1989) Toughening mechanisms in elastomer-modified epoxies. J. Mater. Sci. 24(7):2571–2580CrossRefGoogle Scholar
  40. 40.
    Azimi H, Pearson R, Hertzberg R (1996) Fatigue of rubber-modified epoxies: effect of particle size and volume fraction. J. Mater. Sci. 31(14):3777–3789CrossRefGoogle Scholar
  41. 41.
    Förch, R., H. Schönherr, and A.T.A. Jenkins, Surface design: applications in bioscience and nanotechnology. 2009. John Wiley & Sons, New York.Google Scholar
  42. 42.
    Rath S et al. (2010) Two component silicone modified epoxy foul release coatings: Effect of modulus, surface energy and surface restructuring on pseudobarnacle and macrofouling behavior. Appl. Surf. Sci. 256(8):2440–2446CrossRefGoogle Scholar
  43. 43.
    Pike JK, Ho T, Wynne KJ (1996) Water-induced surface rearrangements of poly (dimethylsiloxane-urea-urethane) segmented block copolymers. Chem. Mater. 8(4):856–860CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.The State Key Lab of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengduChina

Personalised recommendations